Project description
New engineering metabolic pathways offer hope for green chemical supply
Sustainable supply of chemicals is an integral part of the efforts of the European chemical industry to reduce fossil fuel use. Cell-free metabolic engineering is a versatile approach that seeks to increase the selectivity and productivity of chemical bio-manufacturing processes. However, its widespread use is hindered by efficiency, stability and re-usability issues with the soluble enzymes. What’s more, enzyme immobilisation is restricted to simple enzyme cascades. The aim of the EU-funded METACELL project is to develop self-sufficient artificial metabolic cells by immobilising complex metabolic networks on hierarchical porous materials. The resulting technology will serve as a prototype platform to test artificial biosynthetic pathways that can find use in combinatorial chemistry (drug discovery).
Objective
One of the major challenges of sustainable chemistry is expanding the palette of bio-based chemicals that can replace, or at least ameliorate, the exploitation of fuel-based chemicals. Cell-free metabolic engineering using soluble enzymes is an emerging and versatile approach that seeks to increase the selectivity and productivity of chemical biomanufacturing processes. However, soluble and isolated enzymes present major issues in terms of efficiency, stability and re-usability that hamper industrial applications.
To solve these problems, enzymes can be rationally immobilized on smart materials resulting in robust, efficient and self-sufficient heterogeneous biocatalysts, but immobilization is still restricted to simple enzyme cascades. METACELL mission is developing self-sufficient artificial metabolic cells (AMCs) by immobilizing complex metabolic networks on hierarchical porous materials. To this aim, the solid surfaces must play an active role in the chemical process rather than just being a mere immobilization support.
This integrative proposal will exploit protein engineering, surface chemistry, bio-organic chemistry and protein immobilization tools for the successful development of 1) a cell-free artificial metabolism, 2) innovative engineering tools to modify both enzyme and material surfaces and 3) continuous synthesis of industrially relevant fine chemicals catalyzed by AMCs packed into flow reactors. The resulting technology of METACELL will serve as a prototyping platform to test artificial biosynthetic pathways with application in combinatorial chemistry (e.g drugs discovery). METACELL may also offer long-term solutions for the on-demand production of drugs at the point-of-care.
In addition to the technological outputs, METACELL will also provide essential information to understand how spatial organization of multi-enzyme systems affect the performance of in vitro biosynthetic pathways confined into artificial chassis (solid materials).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences economics and business economics production economics productivity
- natural sciences chemical sciences catalysis biocatalysis
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20009 San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.