Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Trapped-ion quantum information in 2-dimensional Penning trap arrays

Description du projet

Développement d’une nouvelle plateforme quantique basée sur des réseaux de pièges de Penning en 2D

Des progrès rapides ont été réalisés en informatique quantique, démontrant un contrôle quantique de haute précision dans des pièges à ions à radiofréquence microfabriqués tout en éliminant le potentiel de radiofréquence problématique grâce à un champ magnétique uniforme. S’appuyant sur ces avancées, le projet IONPEN, financé par l’UE, entend développer une nouvelle plateforme de calcul et de simulation quantiques basée sur des réseaux d’ions 2D extensibles dans des pièges de Penning microfabriqués. Il mettra en évidence l’interaction de plusieurs corps avec des hamiltoniens de spin à des nombres d’ions inaccessibles aux ordinateurs conventionnels. Cela permettra de créer un simulateur quantique évolutif capable de fournir de nouvelles informations sur les liens entre la physique microscopique et le comportement émergent. Le projet aura un impact sur des domaines tels que la physique fondamentale, la chimie, la science des matériaux et la cryptographie.

Objectif

This project will develop a new platform for quantum computation and quantum simulation based on scalable two-dimensional arrays of ions in micro-fabricated Penning traps. It builds upon the rapid advances demonstrating high precision quantum control in micro-fabricated radio-frequency ion traps while eliminating the most problematic element - the radio-frequency potential - using a uniform magnetic field. This offers a significant advantage: since the magnetic field is uniform it provides confinement at any position for which a suitable static quadrupole can be generated. By contrast, r.f. potentials only provide good working conditions along a line. This changed perspective provides access to dense two-dimensional strongly interacting ion lattices, with the possibility to re-configure these lattices in real time. By combining closely-spaced static two-dimensional ion arrays with standard laser control methods, the project will demonstrate previously inaccessible many-body interacting spin Hamiltonians at ion numbers which are out of the reach of classical computers, providing a scalable quantum simulator with the potential to provide new insights into the links between microscopic physics and emergent behavior. Through dynamic control of electrode voltages, reconfigurable two-dimensional arrays will be used to realize a scalable quantum computing architecture, which will be benchmarked through landmark experiments on measurement-based quantum computation and high error-threshold surface codes which are natural to this configuration. Realizing multi-dimensional connectivity between qubits is a major problem facing a number of leading quantum computing architectures including trapped ions. By solving this problem, the proposed project will pave the way to large-scale universal quantum computing with impacts from fundamental physics through to chemistry, materials science and cryptography.

Mots‑clés

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contribution nette de l'UE
€ 1 999 375,00
Adresse
Raemistrasse 101
8092 Zuerich
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Zürich Zürich
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 999 375,00

Bénéficiaires (1)