Skip to main content

Emergence of wild differentiable dynamical systems

Objective

Many physical or biological systems display time-dependent states which can be mathematically modelled by a differentiable dynamical system. The state of the system consists of a finite number of variables, and the short time evolution is given by a differentiable equation or the iteration of a differentiable map. The evolution of a state is called an orbit of the system. The theory of dynamical systems studies the long time evolution of the orbits.
For some systems, called chaotic, it is impossible to predict the state of an orbit after a long period of time. However, in some cases, one may predict the probability of an orbit to have a certain state. A paradigm is given by the Boltzmann ergodic hypothesis in thermodynamics: over long periods of time, the time spent by a typical orbit in some region of the phase space is proportional to the “measure” of this region. The concept of Ergodicity has been mathematically formalized by Birkhoff. Then it has been successfully applied (in particular) by the schools of Kolmogorov and Anosov in the USSR, and Smale in the USA to describe the statistical behaviours of typical orbits of many differentiable dynamical systems.
For some systems, called wild, infinitely many possible statistical behaviour coexist. Those are spread all over a huge space of different ergodic measures, as initially discovered by Newhouse in the 70's. Such systems are completely misunderstood. In 2016, contrarily to the general belief, it has been discovered that wild systems form a rather typical set of systems (in some categories).
This project proposes the first global, ergodic study of wild dynamics, by focusing on dynamics which are too complex to be well described by means of finitely many statistics, as recently quantified by the notion of Emergence. Paradigmatic examples will be investigated and shown to be typical in many senses and among many categories. They will be used to construct a theory on wild dynamics around the concept of Emergence.

Field of science

  • /natural sciences/physical sciences/thermodynamics
  • /natural sciences/mathematics/applied mathematics/dynamical systems

Call for proposal

ERC-2018-COG
See other projects for this call

Funding Scheme

ERC-COG - Consolidator Grant

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Address
Rue Michel Ange 3
75794 Paris
France
Activity type
Research Organisations
EU contribution
€ 1 070 343

Beneficiaries (1)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
France
EU contribution
€ 1 070 343
Address
Rue Michel Ange 3
75794 Paris
Activity type
Research Organisations