European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Emergence of wild differentiable dynamical systems

Opis projektu

Oswajanie układów (matematycznie) dzikich

Odkrywanie prostoty w złożoności lub chaosie leży u podstaw zrozumienia otaczającego nas świata. Matematyka może nam w tym pomóc. Modele matematyczne opisujące zjawiska są konstruowane tak, aby osiągnąć równocześnie niezbędny i wystarczający poziom złożoności. Chodzi o zmniejszenie czaso- i energochłonności obliczeń. W przypadku zmieniających się w czasie procesów fizycznych i biologicznych teoria układów dynamicznych umożliwia przewidywanie zachowania układu w oddalonym punkcie czasowym w oparciu o analizę jego różnych możliwych stanów. W przypadku układów chaotycznych takie rozwiązanie nie jest możliwe, dlatego naukowcy opierają się na metodach probabilistycznych i prawdopodobieństwie, że układ przyjmie dany stan. W „dzikich” układach chaotycznych istnieje nieskończona liczba statystycznie prawdopodobnych możliwości, co stanowi dodatkową komplikację. W ramach finansowanego ze środków UE projektu Emergence ma zostać przeprowadzone pierwsze globalne badanie mające na celu uproszczenie i opisanie takich specjalnych przypadków.

Cel

Many physical or biological systems display time-dependent states which can be mathematically modelled by a differentiable dynamical system. The state of the system consists of a finite number of variables, and the short time evolution is given by a differentiable equation or the iteration of a differentiable map. The evolution of a state is called an orbit of the system. The theory of dynamical systems studies the long time evolution of the orbits.
For some systems, called chaotic, it is impossible to predict the state of an orbit after a long period of time. However, in some cases, one may predict the probability of an orbit to have a certain state. A paradigm is given by the Boltzmann ergodic hypothesis in thermodynamics: over long periods of time, the time spent by a typical orbit in some region of the phase space is proportional to the “measure” of this region. The concept of Ergodicity has been mathematically formalized by Birkhoff. Then it has been successfully applied (in particular) by the schools of Kolmogorov and Anosov in the USSR, and Smale in the USA to describe the statistical behaviours of typical orbits of many differentiable dynamical systems.
For some systems, called wild, infinitely many possible statistical behaviour coexist. Those are spread all over a huge space of different ergodic measures, as initially discovered by Newhouse in the 70's. Such systems are completely misunderstood. In 2016, contrarily to the general belief, it has been discovered that wild systems form a rather typical set of systems (in some categories).
This project proposes the first global, ergodic study of wild dynamics, by focusing on dynamics which are too complex to be well described by means of finitely many statistics, as recently quantified by the notion of Emergence. Paradigmatic examples will be investigated and shown to be typical in many senses and among many categories. They will be used to construct a theory on wild dynamics around the concept of Emergence.

System finansowania

ERC-COG - Consolidator Grant

Instytucja przyjmująca

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Wkład UE netto
€ 1 070 343,00
Adres
RUE MICHEL ANGE 3
75794 Paris
Francja

Zobacz na mapie

Region
Ile-de-France Ile-de-France Paris
Rodzaj działalności
Research Organisations
Linki
Koszt całkowity
€ 1 070 343,00

Beneficjenci (1)