Description du projet
Des forces mécaniques qui créent des cellules cancéreuses métastatiques
Les cellules métastatiques se dissocient d’une tumeur primaire pour former des tumeurs secondaires qui s’avèrent généralement plus agressives et fatales. Le projet FanCy, financé par l’UE, propose une approche pluridisciplinaire, combinant l’ingénierie, la chimie, la biophysique et la biologie cellulaire pour identifier les voies mécanistes des métastases. L’objectif derrière cette proposition est de comprendre quand, comment et pourquoi les cellules métastatiques se détachent d’une tumeur. Les cellules des tissus sont très densément tassées, ce qui les maintient en place: on appelle cet état le blocage. Les cellules bloquées peuvent se fluidifier localement et s’écouler lorsqu’elles sont poussées ou déformées. Des forces plus importantes peuvent transformer l’ensemble du tissu en un état fluide, que l’on appelle déformation. Le projet entend répondre à deux questions cruciales: comment les tissus se déforment et quels mécanismes biophysiques conduisent à cette déformation?
Objectif
The aim of this proposal is to understand when, how and why metastatic tumour cells detach from a tumour.
Often, primary tumours do not kill patients, but secondary tumours do. These so-called metastatic tumour cells disassociate from a primary tumour and, ultimately, prove fatal. Currently, we do not understand the fundamentals of the biophysical pathways and mechanisms of the metastasis of cancer, hampering medical intervention. I propose a multidisciplinary approach, combining engineering, chemistry, biophysics and cell biology to identify the mechanical pathways for the creation of metastatic cancer cells.
Biological cells in tissue are very densely packed, which locks them in place relative to their neighbours, a state referred to as jammed. The collective system of cells can become fluidised locally and flow when pushed or deformed. Even greater forces can make the entire tissue fluid-like, referred to as yielding. The crucial open questions are: how does tissue yield, and what universal physics underlies yielding?
I will develop a novel fundamental and predictive description of yielding in jammed living tissue to show:
1. How and when jammed living cells are driven to fluid-like state.
2. How confinement tunes the migration mode of cancer cells.
3. How yielding is related to the structural evolution of detached cells.
4. How critical scaling controls deformation and flow of living cells near yielding.
I will demonstrate that the distance to yielding governs the mechanical response in collective cell motion inside a tumour, and that exploiting critical scaling allows predicting the dynamics of cell detachment near yielding. The outcomes will significantly aid the treatment of cancer in the near future by bridging the gap between chemical and mechanical pathways of cancer metastasis. I have the required multidisciplinary track record. Moreover, preliminary experiments show highly promising results.
Champ scientifique
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
2628 CN Delft
Pays-Bas