Descripción del proyecto
Aprender de los mejores: los depredadores virales nos dan lecciones sobre el control genético
Si se anunciase que hay un virus suelto que podría infectar nuestras células, secuestrar su maquinaria celular para obligarlas a producir productos virales en lugar de los suyos propios y, finalmente, hacer estallar nuestras células y matarlas para después seguir su camino... sería aterrador. Eso es exactamente lo que hacen los bacteriófagos, pero afortunadamente con las células bacterianas y no con las humanas. Su capacidad de dominar y controlar la expresión génica de sus hospedadores ha evolucionado a lo largo de miles de millones de años y el proyecto BIONICbacteria, financiado con fondos europeos, se propone aprovechar esa experiencia acumulada por los fagos para desarrollar un conjunto de herramientas biológicas sintéticas. El equipo se centrará en bacterias de diseño para la fermentación biotecnológica y el diseño de vacunas.
Objetivo
As nature’s first bioengineers, bacteriophages have evolved to modify, adapt and control their bacterial hosts through billions of years of interactions. Indeed, like modern synthetic biologists aspire to do, bacteriophages already evade bacterial silencing of their xenogeneic DNA, subvert host gene expression, and co-opt both the central and peripheral metabolisms of their hosts. Studying these key insights from a molecular systems biology perspective, inspired us to develop these evolutionary fully-adapted phage mechanisms as a next-level layer of synthetic biology tools. Thus, BIONICbacteria will provide conceptual novel synthetic biology tools that allow direct manipulation of specific protein activity, post-translational modifications, RNA stability, and metabolite concentrations.
The goal of BIONICbacteria is to pioneer an unconventional way to perform synthetic biology, tapping an unlimited source of novel phage tools genetic circuits and phage modulators. To achieve these goals, we will apply and develop state-of-the-art technologies in molecular microbiology and focus on three principal aims:
(1) To exploit new phage-encoded genetic circuits as synthetic biology parts and as intricate biotechnological chassis.
(2) To build synthetic phage modulators (SPMs) as novel payloads to directly impact the bacterial metabolism in a targeted manner.
(3) To create designer bacteria by integrating SPMs-containing circuits into bacterial strains as proof-of-concepts for applications in industrial fermentations and vaccine design.
This proposed “plug-in” approach of evolutionary-adapted synthetic modules, will allow us to domesticate Pseudomonas strains in radically new ways. By building proofs-of-concept for applications in industrial fermentations and vaccine development, we address key problem in these areas with potentially high-gain solutions for society and industry.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. La clasificación de este proyecto ha sido validada por su equipo.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. La clasificación de este proyecto ha sido validada por su equipo.
- ciencias naturalesciencias biológicasmicrobiologíabacteriología
- ciencias naturalesciencias biológicasbiología sintética
- ciencias naturalesciencias biológicasmicrobiologíavirología
- ciencias médicas y de la saludmedicina básicafarmacología y farmaciamedicamentovacuna
- ingeniería y tecnologíabiotecnología industrialtecnología de bioprocesosfermentación
Palabras clave
Programa(s)
Convocatoria de propuestas
(se abrirá en una nueva ventana) ERC-2018-COG
Consulte otros proyectos de esta convocatoriaRégimen de financiación
ERC-COG -Institución de acogida
3000 Leuven
Bélgica