Project description
Smart memory in computers to address data deluge
Conventional silicon computing utilises separate chips for computing and data storage. This creates a bottleneck for data analytics, machine learning and artificial intelligence applications that require ever-larger data transfers between processing and memory units. In-memory computing is an emerging data-processing technology that could solve the big-data energy crunch facing traditional architectures. The EU-funded project MY-CUBE proposes an innovative design that minimises data movement by integrating computing and data storage. The new design features a 3D computer architecture that uses junctionless nanowire transistors and resistive random-access memory cells that are built vertically over one another. It will be able to store massive amounts of data and perform on-chip processing to extract relevant information from a data deluge.
Objective
For integrated circuits to be able to leverage the future “data deluge” coming from the cloud and cyber-physical systems, the historical scaling of Complementary-Metal-Oxide-Semiconductor (CMOS) devices is no longer the corner stone. At system-level, computing performance is now strongly power-limited and the main part of this power budget is consumed by data transfers between logic and memory circuit blocks in widespread Von-Neumann design architectures. An emerging computing paradigm solution overcoming this “memory wall” consists in processing the information in-situ, owing to In-Memory-Computing (IMC).
However, today’s existing memory technologies are ineffective to In-Memory compute billions of data items, as it is the case in the brain. Things may change with the emergence of three key enabling technologies: non-volatile resistive memory, new energy-efficient nanowire transistors and 3D-monolithic. My-CUBE will leverage them towards a functionality-enhanced system with a tight entangling of logic and memory. Only such a technology can support the scalability of the IMC concept.
Following a holistic approach from the system to the material, My-CUBE unique solution relies on a new class of nano-technology, mixing at the fine-grain level a high capacity of non-volatile resistive memory coupled with new junctionless nanowire transistors 3D-interconnected at low-temperature, to perform data-centric computations. A 3D IMC accelerator circuit will be designed, manufactured and measured, targeting a 20x reduction in (Energy x Delay) Product vs. Von-Neumann systems. This technology that adds smartness to memory/storage will not only be a game changer for artificial intelligence, machine learning, data analytics or any data-abundant computing systems but it will also be, more broadly, a key computational kernel for next low-power, energy-efficient European integrated circuits.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology nanotechnology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.