Descripción del proyecto
El grafeno podría emitir luz láser en el rango de los terahercios
La radiación de terahercios tiene el potencial de posibilitar innovaciones en medicina, biología, ciencia de los materiales y telecomunicaciones, pero su despliegue se ve obstaculizado por la falta de fuentes compactas y potentes. Por ejemplo, no existen materiales apropiados con una banda prohibida suficientemente pequeña para el desarrollo de láseres semiconductores que emitan en frecuencias de terahercios. En el proyecto LEON, financiado con fondos europeos, se aborda esta brecha científica y tecnológica con nuevas estructuras de láseres semiconductores que integran materiales basados en el grafeno, que es potencialmente un excelente material candidato para los láseres de terahercios debido a su banda prohibida de «cero». Para eliminar los mecanismos de recombinación no radiactivos que podrían limitar drásticamente la viabilidad de un láser de terahercios, en el proyecto se aprovechan los estados electrónicos discretos en puntos cuánticos de grafeno.
Objetivo
The ambition of this project is to open new horizons in the field of graphene-based devices for THz technology. The major objective is to develop compact THz amplifiers and lasers operating at room temperature, analogous to the concept of semiconductor lasers in the visible and telecom wavelength range.
THz radiation is extremely attractive for fundamental investigations of matter and emerging applications including, for example, security screening, medical imaging and spectroscopy. However, the THz spectral range remains one of the least exploited spectral regions, mainly due to the lack of compact powerful sources. The development of the typical semiconductor-laser scheme emitting at THz frequencies has been seriously hampered by the absence of an appropriate material with a sufficiently small bandgap. The LEON project addresses this technological and scientific blocking point with new semiconductor-laser schemes for THz emission centered on the integration of graphene-based materials.
Indeed, graphene is potentially an excellent candidate for a THz semiconductor-laser model owing to its ‘zero’ bandgap. However, non-radiative recombination mechanisms, especially Auger recombination, reduce the lifetime of the optical gain to few hundreds of femtoseconds. This phenomenon drastically limits the feasibility of a THz laser. In order to suppress these detrimental non-radiative processes, a new concept is needed. The project proposes to exploit the full discretization of electronic states in graphene quantum dots. This high-risk high-gain project will provide important and far-reaching scientific advances, which cannot be achieved with the current state-of-the-art approaches.
This project has three major cornerstones: i) the demonstration of THz amplifiers based on graphene quantum dots, ii) the demonstration of THz lasers based on graphene quantum dots in a microcavity, iii) the exploitation of these THz amplifiers/lasers for security and communication applications.
Ámbito científico
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructuresgraphene
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologymedical engineeringdiagnostic imaging
- natural sciencesphysical sciencesopticslaser physics
- natural sciencesphysical sciencesopticsspectroscopy
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
75794 Paris
Francia