Project description
Boosting the search for symmetry
Detecting symmetry in large and complex data systems is increasingly important in computing. Whether you’re looking at mathematical equations, graphs, road maps or the way social networks evolve, certain repeating patterns occur which can be identified and used to make computation more efficient. Importantly, symmetry detection can help avoid duplication and identify patterns in very complex systems such as neural networks used in machine learning, or in large databases, such as those listing chemical molecules. Developing efficient algorithms for symmetry detection is also known as the Graph Isomorphism Problem - one of the biggest open problems in theoretical computer science. The EU-funded EngageS project will develop theoretical models and software tools to efficiently detect symmetry.
Objective
Symmetry is a phenomenon that appears in many different contexts.
Algorithmic symmetry detection and exploitation is the concept of finding intrinsic symmetries of a given object and then using these symmetries to our advantage. Application areas of algorithmic symmetry detection and exploitation range from convolutional neural networks in machine learning to computer graphics, chemical data bases and beyond.
In contrast to this widespread use, our understanding of the theoretical foundation (namely the graph isomorphism problem) is incomplete and current algorithmic symmetry tools are inadequate for big data applications. Hence, EngageS addresses these key challenges in the field using a systematic approach to the theory and practice of symmetry detection. It thereby also fixes the existing lack of interplay between theory and practice, which is part of the problem.
EngageS' main aims are to tackle the classical and descriptive complexity of the graph isomorphism problem and to design the next generation of symmetry detection algorithms. As key ideas to resolve the complexity, EngageS offers three new approaches on how to prove lower bounds and a new method to settle the descriptive complexity.
EngageS will also develop practical symmetry detection algorithms for big data, exploiting parallelism and memory hierarchies of modern machines, and will introduce the concept of and a road map to exploiting absence of symmetry. Overall EngageS will establish a comprehensive software library that will serve as a platform for integrated research on the algorithmic treatment of symmetry.
In summary, EngageS will develop fast, efficient and accessible symmetry detection tools that will be used to solve complex algorithmic problems in a range of fields including combinatorial algorithms, generation problems, and canonization.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences mathematics pure mathematics discrete mathematics graph theory
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 DARMSTADT
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.