Skip to main content
European Commission logo print header

Terahertz Antennas with Self-amplified Spontaneous Emission

Project description

Boosting antenna emission in the terahertz

The EU-funded TERASSE project plans to assess the feasibility of emitters working on the terahertz range. In particular, the project will investigate the quantum effects that enable self-amplified emission of antennas in the terahertz range. Several types of nanostructured materials will be investigated, such as graphene nanoribbons and graphene-polymer sandwiches, with embedded mesoscopic structures or atomic chains with interatomic coupling. The project will also establish a network of competencies on quantum and nanoelectronics that will include academic and non-academic partners, with the aim to share knowledge and expertise.


The project aims at studying the feasibility of Terahertz range emitters, with two main objectives:
OB.1 – to investigate novel principles for nanoantennas, based on quantum effects enabling self-amplified emission in the THz range;
OB.2 – to create a network of competencies on quantum and nanoelectronics, which includes academic and non-academic players, sharing knowledge and expertise retained by the partners.
Several types of nanostructured materials will be investigated, such as graphene nanoribbons and graphene/polymer sandwiches, with embedded mesoscopic structures, or atomic chains (e.g. transition metals dichalcogenides and graphene dots and their chains) with interatomic coupling.
First, new promising physical mechanisms will be studied, enabling the excitation of mesoscopic structures via shot noise, Rabi and Rabi-Bloch oscillations, and direct interband THz transitions induced by optical excitation. Then, new effective methods for mesoscopic systems will be developed, based on integral formulations that overcome the limits of the methods available so far. Finally, the project will design and implement specific experiments with the aim of observing and demonstrating the proposed physical mechanisms, and of providing proof-of-concept of the proposed THz devices. The final goal is that of bringing these novel solutions from Basic principles and Technology concept (TRL1-2) to experimental critical function and characteristic proof of concept (TRL3).
A strong training and dissemination activity will be carried out, aimed at sharing competencies and expertise. Special emphasis is to be given to the interactions between theoretical and experimentalist Academic partners. The partners will transfer each others competencies and know-how in fields such as nanotechnology and quantum physics, in antennas and circuits modelling and design, in material and device fabrication and in experimental characterization.



Net EU contribution
€ 69 000,00
Viale dell universita campus folcara
03043 Cassino

See on map

Centro (IT) Lazio Frosinone
Activity type
Higher or Secondary Education Establishments
Other funding
€ 0,00

Participants (5)

Partners (3)