Project description
A smart switch from silicon to carbon nanotubes
Semiconductor chips and silicon-based integrated circuits (ICs) power the digital world. But they are not keeping pace with advances in robotics, self-driving cars, the Internet of Things and 5G mobile telephony. With this in mind, the EU-funded NANOSMART project will develop a new technological platform based on carbon nanotubes and 2D material electronics – which will replace silicon electronics. This will pave the way for the future generation, smart monolithic, transmit/receive front-end ICs capable of radio frequency (RF) switching, power management and high efficiency. For instance, within the front-end IC, three sensor types (temperature, humidity and RF radiation built from novel technology) will be integrated to provide smart, autonomous system reaction.
Objective
In the modern world everything goes wireless and everyone goes mobile. To sustain this trend, higher frequency, smaller, more complex analogue electronics with beam steering capabilities are needed. The objective of NANOSMART is to develop technology for future generation, smart monolithic Transmit / Receive front-end ICs capable of RF switching, power management, high efficiency, at a fraction of the footprint and cost of current solutions. NANOSMART addresses this need by developing a new technological platform based on CNT and 2D material electronics (the two most promising technologies to replace Silicon electronics in the future). NANOSMART develops unique concepts already proven by the consortium such as deep sub-wavelength antennae, CNT NEMS for RF switching, nano electromechanical reconfigurable filters and multiple FET technologies. Monolithic integration of all technologies mentioned above will provide a compact platform including new amplifier architecture, power management, RF switching and antennae on one monolithically integrated chip. Within the front-end IC, three sensor types (Temperature humidity and RF radiation built from novel technology) will also be integrated to provide smart, autonomous system reaction and thus improve accuracy, power efficiency and real-time system health monitoring and on-the-fly response to ambient conditions. The two demonstrators planned are aiming at high end radar and mass market IoT applications providing this level of smart functionality for the first time. NANOSMART encompasses extensive design, modelling and advanced characterization techniques to provide the tools for fast industrial take-up of the developed technology. The project’s interdisciplinary consortium is made up of 10 partners from 7 countries with a wide geographical spread (France, Sweden, Ireland, Italy, Romania, Greece, and Spain) and includes a global industrial player, two SMEs and top EU academic and research institutions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencescomputer and information sciencesinternetinternet of things
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringanalogue electronics
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructures
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradar
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
Keywords
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
92190 MEUDON
France