Project description
Making the most of data from electronic health records
Although highly valuable information can be extracted from electronic health records (EHRs), these remain unexploitable because they are unstructured and written in natural language. The EU-funded SAVANA project allows healthcare professionals to generate real-world evidence, make new discoveries, create personalised medicine and evaluate health outcomes. To achieve that, it will create a tool that uses natural language processing to extract data from massive amounts of EHRs’ clinical narratives. The new tool will satisfy the requirements of hospital ethics committees, national health services regulations and pharmaceutical industry policies and is addressed to managers, hospitals and researchers.
Objective
In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have declined by one third. There is a wide consensus that the main cause of this problem is the exhaustion of a model intended to develop ‘broad indications’ and the need for a new ‘precision medicine’ model. We simply do not know enough about the underlying disease mechanisms involved, and more research is required to develop better disease classifications, which will enable a more targeted development approach for drugs and therapies.
Electronic Health Records (EHRs) has been used for more than ten years in most developed countries, and they gather now exhaustive clinical information of millions of patients. Leveraging EHRs could accelerate clinical research, and improve healthcare quality.
However, in order to uncover unknown disease models from EHRs, precision medicine requires massive research studies on thousands of patients (often in several countries). Currently there is no tool capable of: 1) automating the extraction of data from EHRs, and also, solving the privacy concerns raised by EHRs.
SAVANA RESEARCH uses Natural Language Processing to extract data from massive amounts of EHRs’ clinical narratives. It has the following advantages intended to make a leap in clinical research efficiency: 1) It uses only de-identified clinical records and ensures state of the art technologies to protect data privacy; 2) It is capable of decoding ten times more EHRs in half of the time; 3) It is capable of identifying 100 times more variables from EHRs; 4) And it costs 40% less.
The application of NLP to healthcare is a fast-growing market that is expected to reach 2.65 billion by 2021, by growing at a CAGR of 20.8%. SAVANA RESEARCH’s target markets are primary Europe and North America, which together comprises 75% of all clinical trials worldwide.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science big data
- natural sciences computer and information sciences data science natural language processing
- natural sciences computer and information sciences software software development
- medical and health sciences health sciences personalized medicine
- medical and health sciences clinical medicine hepatology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28016 Madrid
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.