Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Advanced in vitro physiological models: Towards real-scale, biomimetic and biohybrid barriers-on-a-chip

Project description

Biomimetic physiological platform for drug discovery

The EU-funded BBBhybrid project focused on the design, production, characterisation and future commercialisation of the first real-scale 3D-printed model of the brain tumour microenvironment and its associated neurovasculature. This biomimetic, dynamic, 3D system with microcapillary diameter size and fluid flows similar to in vivo physiological parameters will reliably reproduce the physiological environment and accurately estimate the amount of drugs or nanomaterial-associated compounds delivered through a modular length of the system. The BBBhybrid platform could be easily adopted for the development of co-culture systems for high-throughput screening of brain drugs and testing the efficacy of different anticancer therapies.

Objective

This project is focused on the design, the production, the characterization, and the proposal for future commercialization of the first 1:1 scale 3D-printed realistic model of the brain tumor microenvironment with its associated blood neurovasculature. The proposed biomimetic dynamic 3D system, characterized by microcapillary diameter size and fluid flows similar to the in vivo physiological parameters, represents a drastic innovation with respect to other models well-established in the literature and available on the market, since it will allow to reliably reproduce the physiological environment and to accurately estimate the amount of drugs and/or of nanomaterial-associated compounds delivered through a modular length of the system. At the same time, in vitro 3D models are envisioned, allowing more physiologically-relevant information and predictive data to be obtained. All the artificial components will be fabricated through advanced lithography techniques based on two-photon polymerization (2pp), a disrupting mesoscale manufacturing approach which allows the fast fabrication of low-cost structures with nanometer resolution and great levels of reproducibility/accuracy. The proposed platform can be easily adopted in cell biology laboratories as multi-compartmental scaffold for the development of advanced co-culture systems, the primary biomedical applications of which consist in high-throughput screening of brain drugs and in testing of the efficacy of different anticancer therapies in vitro.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-PoC

See all projects funded under this call

Host institution

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
VIA MOREGO 30
16163 GENOVA
Italy

See on map

Region
Nord-Ovest Liguria Genova
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 000,00

Beneficiaries (1)

My booklet 0 0