Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

New Paradigm in Electrolyte Thermodynamics

Project description

New models will defuse a charged situation and provide clarity

Electrolytes are chemical compounds that dissociate into ions, charged species whose movement creates a current. The phenomenon is captured in electroencephalographs and electrocardiographs, is the defining characteristic of batteries and fuel cells, and is also fundamental to a myriad of environmental, chemical and industrial processes. Despite this, thermodynamic models that help us understand electrolytic systems and their behaviour are still largely based on evidence and require lots of data. The EU-funded ElectroThermo project aims to change that with an ambitious plan to fill in gaps, clear up misunderstandings in electrolyte thermodynamics and forge a clear and well-defined path forward for electrolyte solutions.

Objective

The project’s overall target is to arrive at a fundamental understanding of electrolyte thermodynamics and thus enable the engineering of a new generation of useful, physically sound models for electrolyte solutions. These models should be general and applicable to a very wide range of conditions so that they can be potentially used for a wide range of applications.
Electrolyte solutions are present almost anywhere and find numerous applications in physical sciences including chemistry, geology, material science, medicine, biochemistry and physiology as well as in many engineering fields especially chemical & biochemical, electrical and petroleum engineering. In all these applications the thermodynamics plays a crucial role over wide ranges of temperature, pressure and composition. As the subject is important, a relatively large body of knowledge has been accumulated with lots of data and models. However, disappointingly the state-of-the art thermodynamic models used today in engineering practice are semi-empirical and require numerous experimental data. They lack generality and have not enhanced our understanding of electrolyte thermodynamics. Going beyond the current state of the art, we will create the scientific foundation for studying, at their extremes, both “primitive” and “non-primitive” approaches for electrolyte solutions and identify strengths and limitations. The project is based on the PI’s many years of experience in thermodynamics. The ambition is to make new advances to clarify major questions and misunderstandings in electrolyte thermodynamics, some remaining for over 100 years, which currently prevent real progress from being made, and create a new paradigm which will ultimately pave the way for the development of new engineering models for electrolyte solutions. This is a risky, ambitious and crucial task, but a successful completion will have significant benefits in many industrial sectors as well as in environmental studies and biotechnology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0