Project description
Novel method to harness the power of the sun
Solar energy is clean, abundant and renewable. It plays an important role in meeting the world’s energy needs as well as combatting climate change. Its use, however, is limited by various factors such as the weather and transportation issues. Solar fuels could overcome such limitations; however, generation methods are not 100 % reliable, and the efficiency of the solar-to-fuel conversion process is less than 6 %. Addressing this, the EU-funded ECLIPSE project aims to develop an innovative method for solar thermochemical splitting of CO2 and H2O that will achieve high conversion efficiency through an approach that uses ceria membranes. The project will also develop a unique configuration for the solar reactor.
Objective
With more energy from the sun striking the earth's surface in an hour than is consumed annually by fossil fuels, solar energy has the potential to provide significant part of the required global energy, in addition to substantially reducing the emissions of greenhouse gases. Two of the most severe limiting factors of using solar power are the inconsistency of the power output, due to the day/night cycle and weather conditions, and the transportation issues due to geographical location. Solar fuels, produced by combining concentrated solar power with thermochemical processes, are a promising concept to overcome both limitations. These fuels, acting as chemical energy carriers, can be generated at suitable sites and easily transported worldwide, where they can be stored and used. Current methods for solar fuel generation are based on a 2-step reduction-oxidation cycle, with each step at different pressure and temperature, thus creating technological difficulties. Moreover, the solar-to-fuel conversion efficiency of the best process is less than 6%. The goal of this research is to develop a novel method for solar thermochemical splitting of CO2 and H2O, achieving high conversion efficiency. To do so, a unique approach utilizing the use of Ceria membranes will be investigated. The research will include rigorous modelling of the physics, followed by a detailed characterization and optimization, providing a solid understanding of the overall process for the first time. In addition, a novel configuration for the solar reactor will be developed, with steady-state operation and heat recovery, a challenging feat requiring innovative design capable of operating at 1600°C. Following the theoretical research, a large scale (50kW) solar reactor will be designed and fabricated, using the acquired knowledge. The experimental data that will be acquired, combined with the theoretical knowledge, will lead to major advances in the field of solar fuels and energy production.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences physical chemistry thermochemistry
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.