Project description DEENESFRITPL Controlling photon decay could open the door to qubit reset and readout For slightly more than a decade, a new type of superconducting qubit has taken the quantum computing world by storm. The transmon, used in a pioneering controlled qubit-qubit interaction a few years ago, has now become an important tool for investigating multi-qubit phenomena. The EU-funded EDSP project will exploit this system to investigate the possibility of harnessing typically problematic dissipation and decoherence rather than fighting them to enable qubit state reset and photon-mediated fluorescence readout of the state of the qubit. Show the project objective Hide the project objective Objective Dissipation is fundamental to physical systems. In quantum mechanics, this manifests itself as energy decay and dephasing also known as quantum decoherence. In the field of quantum computing, decoherence is often relegated as a non-ideality of the physical system. However, dissipation and decoherence are a necessary for quantum information processing; allowing measurement, state preparation, and quantum error correction. I propose to explore engineered multi-photon dissipation processes using superconducting circuits. By extending the well-established ‘transmon qubit’ platform, this work will investigate the use of symmetry to prevent single-photon decay while allowing two-photon and four-photon decay events. Such a mechanism has immediate applications akin to trapped-ion technology for qubit state reset and resonance fluorescence readout. In addition, possible multi-mode dissipative processes provide a rich physics to explore more complex quantum phenomena in larger systems. This includes entanglement stabilization and the generation of decoherence-free subspaces. Fields of science natural sciencesphysical sciencesquantum physicsengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computersnatural sciencesphysical scienceselectromagnetism and electronicssuperconductivity Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2018 - Individual Fellowships Call for proposal H2020-MSCA-IF-2018 See other projects for this call Funding Scheme MSCA-IF-EF-ST - Standard EF Coordinator THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD Net EU contribution € 224 933,76 Address Wellington square university offices OX1 2JD Oxford GB See on map Region South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00