Objective
CRISPR-Cas immune systems protect bacteria against their viruses (phage). However, some phages encode anti-CRISPR (Acr) genes that block CRISPR-Cas activity. While the molecular understanding of Acr activities and structures are racing ahead, their impact on the ecology and evolution of phage/bacteria populations remains unexplored.
I first aim to identify the ecological factors that influence the selection for Acr genes, to explain why some phages encode many Acr whereas most encode none. Next, by running long-term co-culture experiments, I will examine whether CRISPR-Cas can evolve to escape Acr inhibition and whether Acr genes can reciprocally adapt to restore activity. These experiments will reveal how CRISPR-Cas and Acr coevolve and allow to mathematically predict the long-term stability of Acr activity. I will also explore the genetic bases of this coevolution through deep-sequencing analyses.
This multidisciplinary project combines my expertise in phage biology, that of the host in experimental evolution and bioinformatics and that of collaborator in mathematical modelling. It is expected to open new avenues of research for downstream medical and bioengineering applications.
This high-quality 'training-through-research' will allow me to widen my scientific expertise, develop essential complementary skills and constitute an international collaborative network. The visibility and impact of this research will be increased by a strong dissemination and communication plan. I also aim to reinforce my public engagement activities with a dual objective of making science accessible for everyone and inform about phage research.
Carrying out this project within the Centre for Ecology and Conservation at the University of Exeter (EU accredited), a top department in ecology and evolution worldwide, and under the supervision of two world leading scientists in their fields, will be crucial for the development of my career as an independent European researcher.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences ecology
- natural sciences biological sciences evolutionary biology
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EX4 4QJ Exeter
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.