Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

From FUnction-based TO MOdel-based automated probabilistic reasoning for DEep Learning

Descripción del proyecto

Un aprendizaje profundo robusto que permite agentes autónomos seguros y justos

El aprendizaje automático es un campo de la informática centrado en «enseñar» a los ordenadores a realizar determinadas tareas sin que se los haya programado explícitamente para ello. Aunque sus orígenes se remontan a los años cincuenta del siglo pasado, ha avanzado sobremanera en los últimos veinte años. El aprendizaje profundo va un paso más allá, pues aplica técnicas de aprendizaje automático en la creación de redes neuronales artificiales que imitan cada vez más la anatomía y fisiología del cerebro humano. Estos algoritmos serán fundamentales para las actividades progresivamente más autónomas de las máquinas y los dispositivos, y sus interacciones similares a las de los humanos con personas en el marco del internet de las cosas y la Industria 4.0. El proyecto FUN2MODEL, financiado con fondos europeos, desarrollará un marco novedoso para garantizar que se toman decisiones complejas pensando en la justicia y la seguridad.

Objetivo

Machine learning is revolutionising computer science and AI. Much of its success is due to deep neural networks, which have demonstrated outstanding performance in perception tasks such as image classification. Solutions based on deep learning are now being deployed in real-world systems, from virtual personal assistants to self-driving cars. Unfortunately, the black-box nature and instability of deep neural networks is raising concerns about the readiness of this technology. Efforts to address robustness of deep learning are emerging, but are limited to simple properties and function-based perception tasks that learn data associations. While perception is an essential feature of an artificial agent, achieving beneficial collaboration between human and artificial agents requires models of autonomy, inference, decision making, control and coordination that significantly go beyond perception. To address this challenge, this project will capitalise on recent breakthroughs by the PI and develop a model-based, probabilistic reasoning framework for autonomous agents with cognitive aspects, which supports reasoning about their decisions, agent interactions and inferences that capture cognitive information, in presence of uncertainty and partial observability. The objectives are to develop novel probabilistic verification and synthesis techniques to guarantee safety, robustness and fairness for complex decisions based on machine learning, formulate a comprehensive, compositional game-based modelling framework for reasoning about systems of autonomous agents and their interactions, and evaluate the techniques on a variety of case studies.
Addressing these challenges will require a fundamental shift towards Bayesian methods, and development of new, scalable, techniques, which differ from conventional probabilistic verification. If successful, the project will result in major advances in the quest towards provably robust and beneficial AI.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-ADG - Advanced Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2018-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 376 236,36
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 376 236,36

Beneficiarios (2)

Mi folleto 0 0