Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

General theory for Big Bayes

Description du projet

Actualiser les approches de la probabilité conditionnelle

Le théorème de Bayes, élaboré au XVIIIe siècle, décrit la probabilité conditionnelle, c’est-à-dire la probabilité qu’un résultat se produise en fonction d’un résultat précédent. Les méthodes dites bayésiennes en probabilité et en statistique sont de plus en plus utilisées dans de nombreux domaines de la recherche fondamentale et appliquée. Les approches bayésiennes attribuent des distributions de probabilité plutôt que des nombres discrets à des événements ou à des résultats basés sur des observations antérieures. Elles incluent intrinsèquement des distributions de probabilité et des incertitudes associées à la fois aux entrées et aux sorties. Étant donné que les données disponibles pour développer les modèles augmentent de manière exponentielle, des méthodes plus simples et plus évolutives s’avèrent désormais indispensables. Le projet GTBB, financé par l’UE, s’attaquera à ces défis théoriques et informatiques afin d’améliorer nos capacités prédictives dans des domaines allant des neurosciences à la sécurité.

Objectif

In the modern era of complex and large data sets, there is stringent need for flexible, sound and scalable inferential methods to analyse them. Bayesian approaches have been increasingly used in statistics and machine learning and in all sorts of applications such as biostatistics, astrophysics, social science etc. Major advantages of Bayesian approaches are: their ability to model complex models in a hierarchical way, their coherency and ability to deliver not only point estimators but also measures of uncertainty from the posterior distribution which is a probability distribution on the parameter space at the core of all Bayesian inference. The increasing complexity of the data sets raise huge challenges for Bayesian approaches: theoretical and computational. The aim of this project is to develop a general theory for the analysis of Bayesian methods in complex and high (or infinite) dimensional models which will cover not only fine understanding of the posterior distributions but also an analysis of the output of the algorithms used to implement the approaches.
The main objectives of the project are (briefly):
1. Asymptotic analysis of the posterior distribution of complex high dimensional models
2. Interactions between the asymptotic theory of high dimensional posterior distributions and computational complexity.

We will also enrich these theoretical developments by 3 strongly related domains of applications, namely neuroscience, terrorism and crimes and ecology.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2018-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITE PARIS DAUPHINE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 588 750,44
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 588 750,44

Bénéficiaires (2)

Mon livret 0 0