Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Certification of quantum technologies

Project description

Setting the standards for quantum technologies

Quantum technologies are expected to outperform their classical counterparts in a variety of important tasks, including faster computations and novel encryption schemes. The EU-funded CERQUTE project aims to provide the tools to achieve quantum certification. This will allow detecting when a quantum system has a relevant property, such as entanglement or randomness, or performs a task as expected, such as providing cryptographic security or performing computations correctly. Project research will rest on three pillars that reflect the broadness and interdisciplinary nature of the field: many-body quantum systems, quantum networks and quantum cryptographic protocols.

Objective

Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTEs main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios from many-body systems to protocols employing few devices and questions from theoretical results and experimental demonstrations to commercial products. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 735 043,75
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 735 043,75

Beneficiaries (1)

My booklet 0 0