Project description
Innovative technology to deliver large functional DNA circuitry into mammalian genomes
Gene editing is developing at breathtaking speed and is currently highly effective for local, small genomic DNA edits and insertions. Gene synthesis is now capable of producing thousands of DNA base pairs. The next challenge is genome engineering with the delivery of large multi-component DNA circuitry, including programmable functionalities. The EU-funded DNA-DOCK project aspires to create ground-breaking, easy-to-use technology to enable docking of large DNA cargos with base-pair precision into mammalian genomes, generating multifunctional circuits. Researchers will employ multiple sophisticated technologies to achieve these ambitious goals and accomplish precise DNA integration into specific genomic sites.
Objective
Gene editing has developed at breath-taking speed. In particular CRISPR/Cas9 provides a tool-set thousands of researchers worldwide now utilize with unprecedented ease to edit genes, catalysing a broad range of biomedical and industrial applications. Gene synthesis technologies producing thousands of base pairs of synthetic DNA have become affordable. Current gene editing technology is highly effective for local, small genomic DNA edits and insertions. To unlock the full potential of this revolution, however, our capacities to disrupt or rewrite small local elements of code must be complemented by equal capacities to efficiently insert very large synthetic DNA cargos with a wide range of functions into genomic sites. Large designer cargos would carry multicomponent DNA circuitry including programmable and fine-tuneable functionalities, representing the vital interface between gene editing which is the state-of-the-art at present, and genome engineering, which is the future. This challenge remained largely unaddressed to date.
We aspire to resolve this bottleneck by creating ground-breaking, generally applicable, easy-to-use technology to enable docking of large DNA cargos with base pair precision and unparalleled efficiency into mammalian genomes. To achieve our ambitious goals, we will apply a whole array of sophisticated tools. We will unlock a small non-human virus to rational design, creating safe, flexible and easy-to-produce, large capacity DNA delivery nanodevices with unmatched transduction capability. We will exploit a range of techniques including Darwinian in vitro selection/evolution to accomplish unprecedented precision DNA integration efficiency into genomic sites. We will use parallelized DNA assembly methods to generate multifunctional circuits, to accelerate T cell engineering, resolving unmet needs. Once we accomplish our tasks, our technology has the potential to be exceptionally rewarding to the scientific, industrial and medical communities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology virology
- natural sciences biological sciences genetics DNA
- social sciences political sciences political transitions revolutions
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU BRISTOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.