Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spectral and Optimization Techniques for Robust Recovery, Combinatorial Constructions, and Distributed Algorithms

Project description

Making sense of complex data and relationships

Models are integral to advancing our understanding of the world around us. Once we have developed them, we can change parameters to test hypotheses and evaluate potential outcomes. Model construction, though, is partially based on observations from which we extract certain 'rules' or behaviours, mathematical descriptions of relationships that form the algorithms of the models themselves. Recovering the 'structure' of data can be a very complicated task. The EU-funded SO-ReCoDi project will develop robust recovery algorithms applicable to several challenging problems through a unification of multiple advanced techniques.

Objective

In a recovery problem, we are interested in recovering structure from data that contains a mix of combinatorial structure and random noise. In a robust recovery problem, the data may contain adversarial perturbations as well. A series of recent results in theoretical computer science has led to algorithms based on the convex optimization technique of Semidefinite Programming for several recovery problems motivated by unsupervised machine learning. Can those algorithms be made robust? Sparsifiers are compressed representations of graphs that speed up certain algorithms. The recent proof of the Kadison-Singer conjecture by Marcus, Spielman and Srivastava (MSS) shows that certain kinds of sparsifiers exist, but the proof does not provide an explicit construction. Dynamics and population protocols are simple models of distributed computing that were introduced to study sensor networks and other lightweight distributed systems, and have also been used to model naturally occurring networks. What can and cannot be computed in such models is largely open. We propose an ambitious unifying approach to go beyond the state of the art in these three domains, and provide: robust recovery algorithms for the problems mentioned above; a new connection between sparsifiers and the Szemeredi Regularity Lemma and explicit constructions of the sparsifiers resulting from the MSS work; and an understanding of the ability of simple distributed algorithms to solve community detection problems and to deal with noise and faults. The unification is provided by a common underpinning of spectral methods, random matrix theory, and convex optimization. Such tools are used in technically similar but conceptually very different ways in the three domains. By pursuing these goals together, we will make it more likely that an idea that is natural and simple in one context will translate to an idea that is deep and unexpected in another, increasing the chances of a breakthrough.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

UNIVERSITA COMMERCIALE LUIGI BOCCONI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 971 805,00
Address
VIA SARFATTI 25
20136 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 971 805,00

Beneficiaries (1)

My booklet 0 0