Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Volcanic Forcing in Climate Model Projections: Towards a New Paradigm.

Project description

Impact of climate change on volcanic eruptions

Volcanic eruptions inject sulfur gases in the atmosphere which modify Earth's energy balance and result in a cooling at Earth’s surface. Cooling that follows large eruptions can have major societal impacts and also contribute to mitigating global warming. However, the processes that govern the surface cooling associated with an eruption are themselves sensitive to the climate. For example, the transport of volcanic gases is governed by atmospheric circulation. The EU-funded VOLCPRO project aims to investigate how climate change will affect the life cycle of volcanic gases, and to assess whether volcanic cooling will be enhanced or tamed as Earth warms.

Objective

Volcanic eruptions injecting gases into the stratosphere modify Earth’s radiative balance and atmosphere chemistry, which in turn impacts all components of the Earth system. The surface cooling that follows large eruptions can have major societal impacts and volcanic eruptions contribute to mitigate global warming. Yet, climate model projections use simplistic representation of this key forcing and commonly assume a constant volcanic forcing in the future. The most realistic projections only represent very large and rare eruptions, and ignore how climate change will affect the rise of volcanic plumes, the evolution of the associated aerosol clouds and the subsequent climate impacts.

To improve the representation of volcanic forcing in climate model projections, I will address two fundamental questions:
1) How does a statistically realistic representation of volcanic eruptions of all magnitude in climate models affect projected climate changes?
2) How will climate-volcano feedbacks modulate the impact of future volcanic eruptions on climate?
To answer them, I will perform a suite of experiments with the United Kingdom’s flagship Earth system model, UKESM1, which is a fully coupled aerosol-chemistry-climate model. These experiments are aimed to feed the designing of future climate projections.

During the fellowship, I will gain brand-new skills in climate modeling and be trained by world-leading experts in this field. I will combine these skills with my expertise in physical volcanology to address the proposed research questions and, in particular, improve our understanding of climate-volcano interactions in the context of global climate change. The fellowship will enable me to become an interdisciplinary leader in climate-volcano research and will constitute a stepping stone towards new research opportunities and applications for a tenure-track position.

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution
€ 224 933,76
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 224 933,76