Description du projet
Thermodynamique et dynamique des gaz de Bose dilués à des températures supérieures à zéro
La condensation de Bose-Einstein est un phénomène quantique exotique qui a été observé pour la première fois en 1995 dans des gaz alcalins dilués. Depuis lors, elle a suscité de nombreuses recherches mathématiques sur les propriétés des gaz dilués. Des progrès substantiels ont notamment été réalisés dans la compréhension des propriétés de leur état fondamental dans la limite de Gross-Pitaevskii. Financé dans le cadre du programme Marie Skłodowska-Curie, le projet DEBOGAS a pour objectif de développer de nouveaux outils mathématiques pour étudier les gaz de Bose dilués à des températures positives sur l’échelle de Kelvin. L’accent sera mis sur la preuve d’estimations raffinées de l’énergie libre dans la limite de Gross-Pitaevskii, ce qui permettrait de mieux comprendre comment les interactions entre les particules affectent les propriétés thermodynamiques des gaz de Bose dilués. Le projet étudiera également la dynamique des états d’équilibre thermodynamique approximatifs après modification des champs électriques et/ou magnétiques externes.
Objectif
The experimental realisation of Bose-Einstein condensation (BEC) in trapped alkali gases in 1995 triggered numerous mathematical investigations of the properties of dilute Bose gases. For the mathematical description of these experiments the Gross—Pitaevskii (GP) limit is relevant. In the past two decades there has been a substantial progress in the understanding of ground state properties of Bose gases in the GP limit, culminating in the recent rigorous justification of Bogoliubov’s theory for the ground state energy and for low lying excitations. Except for a recent contribution of me and my co-authors [1], the highly relevant GP limit at positive temperature has not been considered so far. The aim of the proposed project is to develop new mathematical tools to study dilute Bose gases at positive temperature. This will be done from two points of view: Thermodynamics and Dynamics. More precisely, in the first part of the project I plan to prove refined estimates (w.r.t. [1]) for the free energy in the GP limit which would yield a better understanding of how interactions affect the thermodynamic properties of such systems. In the second part I will investigate the dynamics of positive temperature states after the trapping potential will have been switched off and prove that a certain structure of the 1—pdm is stable under time evolution. Apart from asking two highly relevant questions in modern mathematical physics, the project is also interesting from a physics point of view since it would justify two frequently used approximations in the physics literature. [1] A. Deuchert, R. Seiringer, J. Yngvason, Bose-Einstein Condensation in a Dilute, Trapped Gas at Positive Temperaturre, Commun. Math. Phys. (2018). https://doi.org/10.1007/s00220-018-3239-0(s’ouvre dans une nouvelle fenêtre)
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques appliquées physique mathématique
- sciences naturelles sciences physiques thermodynamique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
8006 Zurich
Suisse
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.