Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Devising certifiable and explainable algorithms for verification and planning in cyber-physical systems

Objective

One of the main challenges in the development of complex computerized systems lies in verification -– the process of ensuring the systems' correctness.

Model checking is an approach for system verification in which one uses mathematical reasoning to conduct an algorithmic analysis of the possible computations of the system, in order to formally prove that a system satisfies a given specification.

Traditionally, model checking is done as follows. The user inputs a system and a specification to a model checker, and gets a yes/no output as to whether the system satisfies the specification. Typically, when the answer is ``no'', a counterexample is also outputted, usually in the form of a computation of the system that violates the specification. This gives the user an informative output that can be used to fix the system, or, possible, the specification.

A drawback of model checking is that, in contrast with providing counterexamples for ``no'' answers, a ``yes'' answer does not include any proof, explanation, or certificate of correctness. The advantage of having such certificates is twofold: first, it would help convincing the designer of the system's correctness, and second, it can be used to gain insight into the workings of complex systems.

A similar drawback occurs in an application of model-checking to robotic planning. There, a suggested plan issued by the model checker may seem complicated or counter intuitive to a human user. Thus, one would want some explanation of the plan, that would convince the user of its correctness, and, possibly, its optimality.

The aim of this proposal is to address the challenge of providing certificates for the correctness of systems, and analogously -- providing explanations for plans. This involves several challenges: finding contexts in which explanations and certificates have reasonable definitions, and then - devising a suitable theoretical algorithmic framework, and a practical, scalable implementation.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 185 464,32
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 185 464,32
My booklet 0 0