Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Thermally activated delayed fluorescence (TADF) sensitized fluorescent emitting polymers for low cost solution-processing organic light emitting diodes (OLEDs)

Project description

Highly efficient and low-cost organic light-emitting diodes

Scientific and technological advances must be accompanied by low-cost and scalable manufacturing techniques to ensure commercial viability. Polymer-based organic light-emitting diodes (OLEDs) have numerous benefits over current technologies for lighting and displays. However, current fabrication using vacuum deposition methods is very expensive, and cost-effective solution processing techniques are not compatible. With the support of the Marie Skłodowska-Curie Actions programme, the TSFP project is developing novel and highly efficient fluorescent emitting polymers by introducing innovative groups to the conventional ones, resulting in 100 % utilisation of excitons while enabling low-cost mass production.

Objective

Polymer-based organic light-emitting diodes (OLEDs) can be used to create solution-processed flexible, transparent and large area next-generation lighting and displays. OLEDs are cheaper, mercury free, more energy efficient than the current lighting and display technologies. The wide-scale adoption of this technology is hampered due to the very expensive fabrication costs of vacuum-deposited OLEDs, which are based on small molecule emitters. Polymer-based emitters offer an enticing alternative as the devices can be fabricated using cost-effective solution-processing techniques. What is presently required are polymer materials that show performance metrics comparable with their small molecule analogues.

In this proposed project, to realise 100% utilization of excitons in conventional fluorescent polymers, a series of TADF sensitized fluorescent emitting polyfluorenes are designed by introducing TADF pendant groups onto the conventional fluorescent polyfluorene emitter for low-cost mass production of highly efficient OLEDs. These TADF pendants with higher singlet energy level than that of polyfluorene backbone are expected to efficiently up-convert triplet excitons into singlet excitons, after which all generated singlet excitons will be transferred to polyfluorene backbone for efficient light emission. In addition, to avoid direct capture of triplet excitons by polyfluorene backbone, large volume steric pendants to surround the emissive polymer backbone will be incorporated. Moreover, the light emission spectra can be tuned by copolymerizing low bandgap monomers to cover the full colour range from blue to red. At last the energy transfer mechanism will be revealed by photophysics characterization. Thus, a novel design strategy for highly efficient and narrowly emissive TADF polymers is established.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
NORTH STREET 66 COLLEGE GATE
KY16 9AJ ST ANDREWS
United Kingdom

See on map

Region
Scotland Eastern Scotland Clackmannanshire and Fife
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0