Descripción del proyecto
Enseñar a las máquinas a ver el mundo
La invención de las redes neuronales profundas ha ampliado los horizontes de los procesos de aprendizaje automático. Ahora es posible que un ordenador no solo procese el lenguaje natural y la visión, sino que también aprenda modelos que combinan la visión y el lenguaje (VyL). El proyecto IMAGINE, financiado con fondos europeos, integrará el conocimiento mundial con la generación de lenguaje natural y modelos de VyL. Es decir, el ordenador empleará algoritmos que imitan nuestras habilidades de razonamiento para resolver tareas utilizando el conocimiento disponible en bases de conocimiento multimodales fáciles de interpretar por ordenadores.
Objetivo
Deep neural networks have caused lasting change in the fields of natural language processing and computer vision. More recently, much effort has been directed towards devising machine learning models that bridge the gap between vision and language (V&L). In IMAGINE, I propose to lead this even further and to integrate world knowledge into natural language generation models of V&L. Such knowledge is easily taken for granted and is necessary to perform even simple human-like reasoning tasks. For example, in order to properly answer the question “What are the children doing?” about an image which shows parents with children playing in a park, a model should be able to (a) tell children from parents (e.g. children are considerably shorter), and infer that (b) because they are in a park, laughing, and with other children, they are very likely playing.
Much of this knowledge is presently available in large-scale machine-friendly multi-modal knowledge bases (KBs) and I will leverage these to improve multiple natural language generation (NLG) tasks that require human-like reasoning abilities. I will investigate (i) methods to learn representations for KBs that incorporate text and images, as well as (ii) methods to incorporate these KB representations to improve multiple NLG tasks that reason upon V&L. In (i) I will research how to train a model that learns KB representations (e.g. learning that children are young adults and likely do not work) jointly with the component that understands the image content (e.g. identifies people, animals, objects and events in an image). In (ii) I will investigate how to jointly train NLG models for multiple tasks together with the KB entity linking, so that these models benefit from one another by sharing parameters (e.g. a model that answers questions about an image benefits from the training data of a model that describes the contents of an image), and also benefit from the world knowledge representations in the KB.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales informática y ciencias de la información ciencia de datos procesamiento del lenguaje natural
- ciencias naturales informática y ciencias de la información inteligencia artificial visión artificial
- ciencias naturales informática y ciencias de la información ingeniería del conocimiento
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático
- ciencias naturales informática y ciencias de la información inteligencia artificial inteligencia computacional
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2018
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1012WX Amsterdam
Países Bajos
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.