Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Project description

Coastal marshes and drivers of global climate change

Coastal wetlands are globally important ecosystems providing valuable ecosystem services, such as carbon sequestration over long timescales. These affect global carbon cycling and climate modulation. The EU-funded MarshFlux project aims to address fundamental gaps in understanding how the global cooling potential of coastal marshes will be affected by responses of biogeochemical reaction rates and greenhouse gas (GHG) fluxes to global change. Laboratory incubation experiments mimicking modelled global change scenarios will be conducted to constrain the effects of drivers on marsh soil biogeochemical reaction rates and GHG dynamics.

Objective

Coastal wetlands are globally important ecosystems providing valuable ecosystem services, such as carbon sequestration over long timescales, affecting global carbon cycling and climate modulation. The amount of carbon sequestered, and therefore the net long-term global cooling potential of coastal marshes, however, is affected by complex biogeochemical reactions in marsh soils, which may produce and/or consume all three of the major greenhouse gases (GHGs) (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)). The magnitude and direction of these fluxes, and whether marsh soils act as a source or sink of GHGs, is affected by a variety of environmental factors which are predicted to vary with projected global change. MarshFlux, therefore, aims to address fundamental gaps in understanding of how the global cooling potential of coastal marshes will be affected by responses of biogeochemical reaction rates and GHG fluxes to global change. The effect of multiple drivers of global change on the response of GHG fluxes and key microbial processes for the consumption and production of N2O and CH4, will be investigated using a novel combination of laboratory incubations and mesocosm experiments. Laboratory incubation experiments mimicking modelled global change scenarios will be conducted to constrain the effects of drivers on marsh soil biogeochemical reaction rates and subsequent GHG dynamics, focusing on temperature, nutrient-loading and salinity. The results of these experiments, while critical themselves, will then inform mesocosm experiments to allow for the assessment of the whole ecosystem (soil, water and vegetation) response to global change under current and predicted future conditions. This research is critical for effective management of coastal wetlands to maintain their blue carbon value under future global change.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

THE UNIVERSITY OF BIRMINGHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 276 498,24
Address
Edgbaston
B15 2TT Birmingham
United Kingdom

See on map

Region
West Midlands (England) West Midlands Birmingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 276 498,24

Partners (1)

My booklet 0 0