Project description
A novel route to metallic nanoparticle synthesis
Nanoparticles are important nanomaterials in many fields of applications. Their potential is virtually limitless thanks to their unique and exotic properties relative to bulk forms of the same materials, their ability to be functionalised as required, and their extremely high surface areas. Surfactants are commonly used in nanoparticle synthesis to prevent the aggregation of nanoparticles and allow control over their final shape. However, in most cases and particularly in catalysis, these agents are detrimental to the final applications. The EU-funded CoSolCat will explore a recently patented synthesis method and develop new production strategies that do not require surfactants to obtain nanoparticles. Insights gained are expected to lead to new and improved catalysts for industry.
Objective
CoSolCat is based on a new surfactant-free colloidal synthesis of precious metal nanoparticles developed and patented by the experienced researcher Dr J. Quinson. The technology has attracted interest from industries and a start-up has been created, yet is in its very early stages. Further research is required to fully seize and position the technology as a new state–of –the –art method to produce precious metal nanocatalysts.
The objectives of CoSolCat are to study in detail and develop further surfactant-free syntheses of precious metal-based nanoparticles to be used as catalysts with enhanced performances for the production of valuable chemicals and energy applications.
By combining world-leading expertise from the University of Copenhagen (Assistant-Professor Maria Escudero Escribano), Stanford (Assistant Professor Matteo Cargnello), a start-up and his own experience, Dr J. Quinson will produce, study, characterise, compare and so benchmark nanocatalysts obtained by the technology he patented, new routes to-be-developed in the project, and state-of-the art methods.
This will provide a deeper understanding of the production and properties of precious metal catalysts while the new technology will be more controlled and optimised to a degree relevant for industry. E.g. bi-metallic nanoparticles comprising a non-precious metal will be developed for the first time with new surfactant-free approaches and studied for model hydrogenation reactions. This research will lead to sustainable and affordable catalysts with improved selectivity.
The expertise gained by the applicant will (1) help to mature the technology, (2) develop a new pool of competences in heterogeneous catalysis in Europe, (3) provide expertise in industrially relevant production of catalysts suitable for a range of chemical productions and energy conversion reactions. The proposal is then directly relevant to provide world leading expertise in Europe for a green and more sustainable economy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis
- engineering and technology nanotechnology nano-materials
- social sciences economics and business economics sustainable economy
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.