Project description
Dissecting the process of epithelial to mesenchymal transition
Epithelial to mesenchymal transition (EMT) is a process implicated in cancer metastasis that allows cells to detach from the tissue of origin and enter the circulation. Researchers of the EU-funded MechTransition project have challenged previous conceptions that developmental EMT programmes participate in cancer as well, proposing a mechanical process instead. During MechTransition, they aim to further delineate the mechanism of EMT and investigate the impact of mechanical stress on cancer progression. Results will shed light on how invading cells colonise specific tissues and help identify the drivers of this process, paving the way for novel interventions against metastatic disease.
Objective
While cancer biologists have long assumed that developmental Epithelial to Mesenchymal Transitions (EMT) transcriptional programs also control cancer metastasis, our lab has recently found that cancer EMT instead uses a mechanical-based two-step process. Typically, epithelial cells fated to die get extruded apically into the lumen. However, oncogenic mutations that drive metastatic cancers hijack this process, causing cells to either form masses or to extrude basally back into the tissue at separate sites. Basal extrusion causes transformed cells to not only invade but also to lose their entire apical membranes, including their E-cadherins, which are critical to epithelial identity. Later, invading cells migrate using a stable-bleb type motility typical of cells in confined spaces and then transdifferentiate into a variety of different cell types. While our lab has established that basal extrusion causes invasion and loss of epithelial identity, it is unclear what later causes cells to become mesenchymal. Using the transparent zebrafish embryo, I will investigate the mechanisms that promote the second step of EMT by answering the following questions: 1) Does mechanical stress following basal extrusion cause trans-differentiation of invading cells? 2) What programs promote EMT of transformed cells? 3) What environments allow invading cells to colonise specific tissues? Our new EMT model represents a paradigm shift in our understanding of how tumour cells initiate metastasis, survive in different environments, and become distinct cell types. Thus, addressing these aims could impact our ability to finally treat metastatic disease.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics mutation
- medical and health sciences clinical medicine oncology
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC2R 2LS London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.