Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Higher Order Polar calculus and Euclidean distance degree

Objectif

Polar varieties are central objects in algebraic geometry. Every subvariety in a projective space has an associated list of polar varieties, encoding its tangential properties. Their degrees determine codimension and degree of the dual variety. Moreover, under mild generality assumptions, the polar degrees sum up to the Euclidean distance degree. This quantity is the algebraic degree of the distance of the given variety to a generic point in projective space. It plays an important role in the context of variety learning and algebraic sampling. Recently it has been shown that the polar degrees of a projective variety coincide with the degrees of its coisotropic hypersurfaces. These hypersurfaces live inside Grassmannians and appear naturally in computer vision.

Many of the above objects have been generalized to higher order analogues. Our goal is to extend this generalization to polar geometry to capture higher tangency properties of projective varieties. Projective duality has been expanded to higher order duality by allowing higher order contact, called osculation. Coisotropic hypersurfaces have been generalized to coisotropic varieties, which have arbitrary codimension in their ambient Grassmannian. We will introduce a new notion of higher order polar varieties to create the missing link between higher order duality and coisotropic varieties. We will also study higher order Euclidean distance degrees, describe our new concepts especially for toric varieties, and analyze their tropicalizations.

This project is foundational research within algebraic geometry with a view towards computations and applications in computer vision and algebraic sampling. In addition to algebro-geometric methods (such as intersection theory or the study of resultants and discriminants) it requires techniques from a variety of other disciplines, such as combinatorics, convex geometry, statistics, computer vision, tropical geometry, and both symbolic and numerical computations.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018

Voir tous les projets financés au titre de cet appel

Coordinateur

KUNGLIGA TEKNISKA HOEGSKOLAN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 203 852,16
Adresse
BRINELLVAGEN 8
100 44 STOCKHOLM
Suède

Voir sur la carte

Région
Östra Sverige Stockholm Stockholms län
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 203 852,16
Mon livret 0 0