Objetivo
This fellowship will enable the Experienced Researcher Dr. Gian Maria Dall'Ara and Dr. Alessio Martini, as Host Researcher based at the University of Birmingham, to carry out innovative research at the interface of harmonic and complex analysis. This very active research area has deep connections with the most disparate fields, from algebraic, complex and subriemannian geometry to analysis on Lie groups and numerical harmonic analysis. Despite the spectacular developments of the last decades, many fundamental problems remain open and several phenomena lack a conceptual explanation. Dall'Ara will bring a point of view influenced by mathematical physics in which some of the key questions are interpreted in terms of uncertainty principles for generalized Schrödinger operators, and he has already proved the effectiveness of this approach in a number of situations. Dr. Alessio Martini's mastery of harmonic analysis in various non-Euclidean settings will provide the crucial ingredient to disclose the full potential of these novel ideas. The project consists of various interconnected working packages, mainly focusing on two mathematical objects naturally attached to real hypersurfaces embedded in complex manifolds: Cauchy-Szegö projections and spectral multipliers of Kohn Laplacians. The former are higher dimensional incarnations of the classical Cauchy integral, and as such they are of central importance in modern complex analysis in several variables. The project will increase our understanding of the nature of their singularities and mapping properties under general geometric assumptions involving for example the Ricci curvature. Kohn Laplacians are the natural Laplacians in this context and the study of their spectral multipliers fits into a wider set of problems lying at the heart of contemporary harmonic analysis. Our methods are a combination of geometric analysis, singular integral theory and mathematical physics.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas aplicadas física matemática
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras análisis matemático análisis complejo
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2018
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
B15 2TT Birmingham
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.