Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Batch Optimization of Process Parameters for Hot Working of High Nitrogen Stainless Steels and Thermodynamic Validation

Project description

Models help industry exploit a small window of opportunity at high temperatures

First used as an alloying element in the 1930s, nitrogen as an alloy of stainless steel became an important area of research and development in the 1980s and 1990s. Advances in modelling and processing have led to increasing exploitation of the high strength and excellent corrosion resistance of high-nitrogen stainless steels in extreme environments. Improving properties while simultaneously reducing the environmental impact and enhancing the sustainability of processing will require improved process models. The EU-funded BOHNS-TV project will work on optimising batch processing of high-nitrogen stainless steels via a holistic campaign of experiments and modelling.

Objective

High nitrogen stainless steels are becoming an increasingly important new class of engineering materials due to its favorable combination of mechanical, chemical and physical properties: high strength and toughness, nickel-saving and excellent corrosion, which enable its application in extensive fields such as military, marine equipment, petrochemical, etc. Hot working of high nitrogen stainless steel is always the challenge to engineers and researchers due to the diversity of the hot working window, which is strongly affected by nitrogen content. Moreover, there are still open questions on nitrogen content effect on thermodynamic theories (e.g. dynamic recrystallization and stacking fault energy). The primary objective of this project is to develop a novel approach for batch optimization of hot working processes of high nitrogen stainless steels, validate the thermodynamic theories and transfer scientific results into application. A gradient model will be synthesized using chemical heat treatment to support the modelling and experiments in a mechanical processing area. Both modelling and experimental studies will be carried out in close collaboration with Sandvik (a world-leading manufacturer of stainless steel) and KTH, Royal Institute of Technology, Sweden (one of the world-leading universities on first-principles study of the stacking fault energies in advanced alloys). These international collaborations help to ensure that the project will be successfully completed and the findings of the project will be transferred to and implemented in industry. In broader terms, the project will contribute to the enhancement of traditional nitrogen alloying theory and improvement of manufacturing capacities of high nitrogen stainless steel, reducing the energy consumption and emission pollution, and thus helping to attain socioeconomic and environmental targets in the context of the EU 2020 vision.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 219 312,00
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 219 312,00
My booklet 0 0