Skip to main content

Designing Devices by Doping on Demand

Objective

Electronic doping, the control over the charge carrier density, is at the heart of the success of the semiconductor industry. Promising new semiconductor materials like conductive polymers, fullerenes and quantum dots cannot be doped by traditional doping methods. The applicant and his group have developed a general method to dope these materials on demand with an electrochemical method, combined with photopolymerization of the solvents and electrolyte ions. This methods allows to precisely control the charge density in these new semiconductor materials and also allows patterning of the doping density via methods akin to photolithography used in the semiconductor industry. This enable the design of new device geometries, such as lateral pn junctions that could allow easy on chip integration of e.g. solution processable LEDs. The goal of this proof-of-concept application is to investigate the application potential of this newly developed technology. In particular it involves the development of demonstrator devices to showcase the technique’s potential, to investigate and protect the intellectual property and to analyze the interest from key industrial stakeholders in this technology. When successful, this technology has the potential to revolutionize the semiconductor industry. It could be of great economic potential and in addition may contribute to achieving sustainability goals by reducing energy consumption of lamps and displays and by offering new and improved means to harvest solar via highly efficient solution processable solar cells.

Field of science

  • /natural sciences/physical sciences/electromagnetism and electronics/electrical conductivity/semiconductor
  • /natural sciences/chemical sciences/polymer science
  • /natural sciences/mathematics/pure mathematics/geometry
  • /social sciences/other social sciences/social sciences interdisciplinary/sustainable development

Call for proposal

ERC-2018-PoC
See other projects for this call

Funding Scheme

ERC-POC - Proof of Concept Grant

Host institution

TECHNISCHE UNIVERSITEIT DELFT
Address
Stevinweg 1
2628 CN Delft
Netherlands
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 150 000

Beneficiaries (1)

TECHNISCHE UNIVERSITEIT DELFT
Netherlands
EU contribution
€ 150 000
Address
Stevinweg 1
2628 CN Delft
Activity type
Higher or Secondary Education Establishments