Skip to main content

Venom Evolution in Nemerteans: Connecting Functional Morphology, Gene Expression and Proteome through Spatial Omics

Objective

Animal venoms are key adaptations that have evolved independently in many taxa to assist in defence, predation and competition. Venoms are some of the most complex biochemical secretions known in nature, but despite this complexity, there is a high degree of convergence in toxin structure and targets, making venomous organisms great model systems to investigate areas as diverse as molecular evolution, functional convergence and drug discovery. However, the processes underlying toxin and venom evolution remain poorly understood, particularly in invertebrates. With recent advancements in sequencing and analytical techniques these neglected taxa are being increasingly investigated, revealing a high genetic and functional diversity of venom compounds and challenging traditional views about venom evolution. Still, many phyla such as ribbon worms (Nemertea), active predators that use toxins for defense and predation, remain understudied. This project aims to investigate venom evolution in Nemertea using an integrative evolutionary venomics approach. I propose to use a transcriptomics-proteomics approach referred to as proteogenomics, combining RNA-seq differential gene expression analysis (DGE) and tandem mass spectrometry-based proteomics (MS/MS) to determine venom composition, and integrate these data with expression and functional morphology data derived from spatial omics, both spatial transcriptomics (ST) and spatial proteomics (MALDI-IMS), transmission and scanning electron microscopy (TEM and SEM). This will advance our understanding of ribbon worm venom systems, and shed new light into the true diversity of animal venoms and their evolution. Additionally, this research will likely uncover novel bioactive compounds, with great potential as drug leads and biotechnological tools, making this project’s findings highly relevant to the H2020 focus area Blue Growth objective of developing new bio-based products, including pharmaceuticals.

Field of science

  • /natural sciences/biological sciences/biological behavioural sciences/ethology/biological interaction
  • /natural sciences/biological sciences/molecular biology/molecular evolution
  • /natural sciences/biological sciences/biological morphology/functional morphology
  • /natural sciences/biological sciences/zoology/invertebrate zoology
  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins/proteomics

Call for proposal

H2020-MSCA-IF-2018
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

NATURAL HISTORY MUSEUM
Address
Cromwell Road
SW7 5BD London
United Kingdom
Activity type
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
EU contribution
€ 224 933,76