Description du projet
Étude de la délimitation des variétés algébriques de Calabi-Yau
Les variétés de Calabi-Yau sont l’un des éléments constitutifs les plus importants des variétés algébriques. Une meilleure compréhension de la géométrie et de la classification des variétés de Calabi-Yau donnerait des applications en physique théorique car elles satisferaient l’espace requis pour les six dimensions spatiales «invisibles» de la théorie des cordes. Rechercher s’il existe de nombreuses familles de variétés Calabi-Yau dans une dimension fixe – une propriété appelée délimitation – est un vieux défi. Financé par le programme Actions Marie Skłodowska-Curie, le projet BoundModProbAG vise à prouver qu’il existe essentiellement un nombre fini de familles de variétés Calabi-Yau avec un élément de structure supplémentaire – une fibration elliptique – dans n’importe quelle dimension.
Objectif
Algebraic geometry is a sophisticated area of mathematics dating back to the mid 19th-century, that links algebra and geometry with many parts of mathematics and theoretical physics. The basic objects, called algebraic varieties, are the common zero sets of polynomial functions, which are higher dimensional analogues to the ellipses and hyperbolas of antiquity. The subject has key applications in very many branches of modern mathematics, science and technology.
One of the main goals in algebraic geometry is to classify algebraic varieties. These can often be decomposed into simpler shapes that act as fundamental building blocks in the classification. But how many different shapes appear in each class of building blocks?
Calabi-Yau varieties, characterised as flat from the point of view of Ricci curvature, are one of 3 types of building blocks of algebraic varieties. Calabi-Yau 3-folds and 4-folds have formed the focus of interest of string theorists over recent decades. A better understanding of the geometry and the classification of Calabi-Yau varieties would advance string theory in fundamental ways, and would provide many new examples and models to study.
Since they are building blocks for constructions in geometry and theoretical physics, understanding how many Calabi-Yau varieties there are is a question of fundamental importance. The problem is to know whether the shapes of Calabi-Yau varieties come in just finitely many families in any fixed dimension - a property that goes under the name of boundedness.
This very difficult question remains wide open. While this problem has long been considered to be out of reach, recent developments make powerful techniques available to investigate new aspects of it. The aim of this research project is to show that there is essentially a finite number of families of Calabi-Yau varieties with some extra piece of structure -- an elliptic fibration -- in any dimension.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- lettres histoire et archéologie histoire histoire ancienne
- sciences naturelles sciences physiques physique théorique théorie des cordes
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF-EF-ST - Standard EF
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1015 LAUSANNE
Suisse
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.