Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Porous carbon materials for Solar photoElectrolytic Disinfection

Project description

Solar-powered water disinfection

Globally, at least two billion people use a drinking water source contaminated with faeces. Even in the developed world, disease-causing and often antibiotic-resistant microorganisms can find their way into the drinking supply. Sustainable, inexpensive water disinfection methods are urgently needed. Solar disinfection technologies have been around for a while. They are getting a turbo-boost of high-tech support from nanostructured carbon materials, thanks to the EU-funded SED project. Natural water and oxygen will be used rather than chemical oxidants and the whole process will be powered by the sun for a clean, sustainable, and eco-friendly solution.

Objective

Water is one crucial natural resource since life on our planet depends on it. The transmission of serious diseases through pathogenic microorganisms in water is extremely common in the developing world and the antimicrobial resistance has increased globally. The understanding of new processes that guarantee effectively the elimination of resistant microorganisms and access to safe drinking water, is therefore of utmost importance, thus a priority in H2020 programme. The scientific aim of Porous carbon materials for Solar photoElectrolytic Disinfection (SED) project is the development of a new sustainable methodology for water treatment. It will be the first time that Ordered Mesoporous Carbons and graphene foam are used in a solar photoelectrolytic disinfection system. The societal aims are to contribute to the reduction of the proportion of people without sustainable access to safe drinking water and basic sanitation. SED project proposes an advanced oxidation process combined with specific carbon materials, which can operate under ambient temperature and pressure, developing a new low-cost technology to water treatment. Oxygen and water will be used as oxidant without the addition of consumable chemicals and without generation of potential mutagenic disinfection byproducts. If one uses solar energy to drive the photoelectrolytic process, then it becomes a truly clean technology. The Associate Laboratory LSRE-LCM (Faculty of Engineering, University of Porto, FEUP) has excellent resources and facilities to carry on this research, because it is one of the most advanced academic laboratories for carbon materials production and characterisation in the EU. The participation of the Adventech company as the partner organisation for the secondment is an excellent opportunity to develop a new research method in which the transference of knowledge is one of the principal aims. These are excellent conditions for the development of SED project by Dr Velo.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

UNIVERSIDADE DO PORTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 147 815,04
Address
PRACA GOMES TEIXEIRA
4099-002 PORTO
Portugal

See on map

Region
Continente Norte Área Metropolitana do Porto
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 147 815,04
My booklet 0 0