Skip to main content

STable perovskite solar cells via interfacial engineering of 2D/3D mixed-dimensional Absorbers and Robust dopant-free hole transporting materialS


The growth of perovskite in the photovoltaic field is unprecedented. In only a very few years, the power conversion efficiency (PCE) raised from 3.8% (in 2009) to 23.3% (in 2018). However, before bringing PSCs to an industrial scale-up process, major issues need to be addressed, among one of the most concerns the lack of stability against IEC61646 accelerated aging protocol. Improving stability is at the heart of the STARS project. To achieve such an important goal, STARS combines two main approaches: (i) Development of 2D/3D mixed-dimensional perovskites via interfacial engineering and (ii) development of robust dopant-free hole transporting materials (HTM). Fellow’s knowledge of HTM synthesis and device processing will be highly beneficial for Prof. Hagfeldt (host) research activities which are mainly focused on the development of new materials and molecular engineering of interfaces to achieve stability. STARS is designed to expand/broaden fellow’s knowledge towards device aging, crystallography, and photophysics. STARS will add several new dimensions to fellow’s skill set and instill leadership qualities and management skills that will be extremely beneficial for his future career.

Field of science

  • /natural sciences/earth and related environmental sciences/geology/mineralogy/crystallography

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Batiment Ce 3316 Station 1
1015 Lausanne
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 191 149,44