Skip to main content
European Commission logo print header

Supramolecular Catalysis for Chemofixation and Electroreduction of CO2

Description du projet

Tendre un piège pour capturer et «faire disparaître» les molécules de CO2

Les technologies qui capturent et stockent ou convertissent le CO2 avant qu’il ne soit émis dans l’atmosphère seront extrêmement importantes durant la transition vers des formes d’énergie plus propres. D’importants travaux de recherche et de développement ont été consacrés aux catalyseurs convertissant le CO2 en produits chimiques ou en carburants, mais de nombreux défis n’ont pas été suffisamment relevés. Le projet SupraFixCO2, financé par l’UE, a trouvé une solution innovante pour améliorer l’efficacité et la sélectivité avec lesquelles un catalyseur se lie et convertit le CO2: l’isolation physique. Mieux encore, elle peut être obtenue dans l’eau avec des conditions de réaction modérées. L’équipe prévoit de dissimuler un catalyseur dans une cage nanocavitaire supramoléculaire dans laquelle les molécules de gaz CO2 entreront facilement.

Objectif

Global warming has become one of the global concerns which is threatening all life on our planet. As the greenhouse gas, carbon dioxide (CO2) has been extensively released by human activities. To reduce CO2 emission, one promising strategy is to reuse CO2 for producing value-added chemicals or fuels. For this purpose, many efforts have been devoted in constructing effective catalysts for CO2 utilization. However, many problems still limit their application, such as weak CO2 binding to the catalytic centre, low efficiency and selectivity, harsh catalytic conditions, etc. To address these challenges, we decide to think out of box. By marrying supramolecular chemistry with CO2 utilization, we aim to develop new systems of supramolecular catalysis for chemofixation and electroreduction of CO2. To this end, we plan to innovatively employ cucurbit[n]uril, a kind of water-soluble macrocyclic host, to encapsulate a catalyst or a reactant within its hydrophobic nanocavity. After first guest incorporation, CO2 as a non-polar gas molecule may strongly tend to enter the residual hydrophobic space within CB[n]'s cavity. Through such enhanced CO2 binding, supramolecular catalysis for chemofixating CO2 into cyclic carbonates and electroreducing CO2 to CO fuel could be significantly promoted. High efficiency and selectivity, and mild catalytic conditions in aqueous media could be also achieved. Furthermore, the catalytic process and mechanism will be in situ studied by a nanoparticle-on-mirror technique in a subnanometer level. In this way, supramolecular catalysis for CO2 utilization could be firstly developed. This proposed project is inherently an interdisciplinary research, therefore we will work closely with colleagues from our department and Department of Physics. We do believe that this research will attract lots of interests and attentions from scientists in the frontiers of supramolecular chemistry, CO2 utilization, catalytic science, electrochemistry and nanophotonics.

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 224 933,76
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 224 933,76