CORDIS - Risultati della ricerca dell’UE
CORDIS

Supramolecular Catalysis for Chemofixation and Electroreduction of CO2

Descrizione del progetto

Come innescare una trappola per la cattura e la «scomparsa» delle molecole di CO2

Le tecnologie che catturano e immagazzinano o convertono la CO2 prima che venga emessa nell’atmosfera saranno estremamente importanti durante la transizione verso forme di energia più pulite. Notevoli attività di ricerca e sviluppo sono state dedicate ai catalizzatori che convertono la CO2 in sostanze chimiche o combustibili, ma molte sfide non sono state sufficientemente superate. Il progetto SupraFixCO2, finanziato dall’UE, ha messo a punto una soluzione innovativa per migliorare l’efficienza e la selettività con cui un catalizzatore si lega e converte la CO2: l’isolamento fisico. Ancora meglio, esso può essere realizzato in acqua con condizioni di reazione blande. Il team prevede di nascondere un catalizzatore in una gabbia a nanocavità supramolecolare in cui entreranno prontamente le molecole gassose di CO2.

Obiettivo

Global warming has become one of the global concerns which is threatening all life on our planet. As the greenhouse gas, carbon dioxide (CO2) has been extensively released by human activities. To reduce CO2 emission, one promising strategy is to reuse CO2 for producing value-added chemicals or fuels. For this purpose, many efforts have been devoted in constructing effective catalysts for CO2 utilization. However, many problems still limit their application, such as weak CO2 binding to the catalytic centre, low efficiency and selectivity, harsh catalytic conditions, etc. To address these challenges, we decide to think out of box. By marrying supramolecular chemistry with CO2 utilization, we aim to develop new systems of supramolecular catalysis for chemofixation and electroreduction of CO2. To this end, we plan to innovatively employ cucurbit[n]uril, a kind of water-soluble macrocyclic host, to encapsulate a catalyst or a reactant within its hydrophobic nanocavity. After first guest incorporation, CO2 as a non-polar gas molecule may strongly tend to enter the residual hydrophobic space within CB[n]'s cavity. Through such enhanced CO2 binding, supramolecular catalysis for chemofixating CO2 into cyclic carbonates and electroreducing CO2 to CO fuel could be significantly promoted. High efficiency and selectivity, and mild catalytic conditions in aqueous media could be also achieved. Furthermore, the catalytic process and mechanism will be in situ studied by a nanoparticle-on-mirror technique in a subnanometer level. In this way, supramolecular catalysis for CO2 utilization could be firstly developed. This proposed project is inherently an interdisciplinary research, therefore we will work closely with colleagues from our department and Department of Physics. We do believe that this research will attract lots of interests and attentions from scientists in the frontiers of supramolecular chemistry, CO2 utilization, catalytic science, electrochemistry and nanophotonics.

Meccanismo di finanziamento

MSCA-IF-EF-ST - Standard EF

Coordinatore

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 224 933,76
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 224 933,76