Skip to main content

Molecular mechanisms of photoprotection in plants.


Photosynthesis is a biological process of primary importance, as it provides the energy that drives food, feedstock and biofuel production and mitigates climate change. Light in excess of photosynthetic capacity can be damaging, thus ways to protect against damage have evolved, including ways to minimize light absorption, detoxify reactive oxygen species generated by excess light, and dissipate excess absorbed light. Together, these processes are known as photoprotection. Despite the physiological importance of photoprotection, the molecular mechanisms that protect against light stress remain largely unknown, especially those that protect from prolonged light stress. The objective of the proposed research project is to solve molecular mechanisms of photoprotection in plants. My specific aims are to 1) investigate the function of known involved factors in sustained energy dissipation in the model plant Arabidopsis, 2) identify novel molecular players and 3) use an organism that is genetically adapted to cope with high light stress, the evergreen Norway spruce. The research will be carried out in my laboratory where genetics, biochemistry, biophysics and physiological approaches will be combined to address this problem. The research in my group will provide insights into fundamental mechanisms of light energy capture, utilization and dissipation and will lead to the identification of new targets for manipulation, key to increasing yields of energy and food crops.

Field of science

  • /natural sciences/biological sciences/genetics and heredity

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-RI - RI – Reintegration panel


901 87 Umea
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 203 852,16