Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Coherent Back-Lasing from Atmospheric Insects

Project description

Advancing detection of free-flying insects

Insects are central components of ecosystems as well as disease vectors and pests, and it is, therefore, necessary to monitor their behaviour, habitats and populations. The EU-funded Bug-Flash project has developed a novel approach for LIDAR entomology, the remote sensing of insects through light scattering that detects time of flight. Bug-Flash researchers have created a sensitive approach capable of undertaking 100 000 observations of free-flying insects per day. This advanced LIDAR monitoring method can be applied for determining unusual insect activity but also for tracking disease vectors such as malaria mosquitos and insect pests for agricultural purposes.

Objective

I received I received the prestigious Inaba award by the lidar community for advancing lidar entomology. Our Scheimpflug lidar can be implemented at 1% of the conventional cost and weight. It allows atmospheric observation with unpreceded sensitivity and spatiotemporal resolution. The kHz sampling rates can exceed the round-trip time of the light and reveal the modulation spectra for classifying free flying insect species over ground. The method has infinite focal depth and efficiently profiles sparse organisms in the airspace with 100000 observations per day. This tool is of key importance for tackling challenges related to pollinator diversity, agricultural pests and pesticides and malaria disease vectors. As in radar entomology, in situ lidar monitoring apparently has inevitable limitations: 1) Detection limit deteriorate with range, and far observations are biased towards larger organisms, 2) It takes several wing-beats, and therefore time, beam-width and energy to retrieve a modulation spectrum for classifying species. I propose to remove range biasing and classify insects by a microsecond flash of light. Back-lasing in air has been a dream of physicists for half a century. I now intend to capture specular reflexes from flat wing membranes. When the surface normal coincides with the lidar transect, collimated back-propagating laser light is accomplished. This flash of light is spectrally fringed and can report on the membrane thickness for target classification purpose. This project has three ambitious milestones of increasing challenge with in situ campaigns:
A) Polarimetric kHz lidar: Verification of specular flashes, investigation of range dependence, properties and likelihood.
B) Remote nanoscopy: Spectral analysis of remotely retrieved flashes for membrane thickness assessment and optimization of back-scatter resonance.
C) Farfetched flatness: I will enhance apparent surface roughness and collimated back-scatter from diffuse specimen by infrared methods

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-STG

See all projects funded under this call

Host institution

LUNDS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 487,06
Address
Paradisgatan 5c
22100 Lund
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 487,06

Beneficiaries (1)

My booklet 0 0