Project description
Regulation of extracellular matrix properties
The extracellular matrix (ECM) is a complex meshwork of proteins and carbohydrates within and surrounding tissues and organs, that enables cell adhesion and migration. ECM has a key role in development, cancer and wound healing, responding dynamically to different mechanical loads. The EU-funded VISCOMATRIX project aims to unveil the biophysical and molecular mechanisms that regulate ECM viscoelasticity and understand how it affects cell and tissue response. For this purpose, scientists will employ 3D materials and change various parameters to identify the key determinants of ECM viscoelasticity. Results will impact various biological fields, including tissue engineering and biomaterials design.
Objective
The mechanical properties of the extracellular matrix (ECM) regulate processes during development, cancer and wound healing. The vast majority of research efforts in this field have been focused on ECM’s elasticity as a leading determinant of cell and tissue behaviour. However, the ECM is not merely elastic but is instead both viscous and elastic. Due to its viscoelastic nature, the ECM response to mechanical loads is inherently dynamic and evolves with time, independently of matrix degradation or remodelling. Despite the universality of ECM’s viscoelasticity, how viscoelasticity affects tissue function is unknown. Based on our preliminary data, cellular behaviour diverges significantly between viscoelastic and elastic ECMs. We hypothesize that viscoelasticity dominates tissue response. Our objective is to determine the biophysical and molecular mechanisms that regulate viscoelasticity sensing and mechanotransduction in 3D and understand its implications in cell and tissue response. To address, we will use an integrative approach that will combine 3D materials with exquisite control of viscoelastic properties, systematic molecular perturbations, computational modelling and precise quantitative analysis of cellular properties, forces and stresses. While using these tools, we will unravel the molecular mechanisms that regulate viscoelasticity response at single-cell and collective level. We will determine the dynamic role of viscoelasticity in breast homeostasis, malignant transformation and invasion. Finally, we will validate the implications of viscoelasticity by measuring breast ECM’s viscoelastic properties and with in vivo experiments. We expect that this project will unravel novel mechanosensing mechanisms operating at the roots of biological responses. These mechanisms, due to the inherent viscoelastic nature of tissues, will affect many biological fields from morphogenesis to cancer, and applied fields such as tissue engineering and biomaterials design.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology
- engineering and technology industrial biotechnology biomaterials
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC2R 2LS London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.