Project description
Climate’s role in mountain denudation
Research suggests that mountain ranges are not static but evolve with (and respond to) Earth’s climate and tectonic uplift. Scientists are still debating on how this process of erosion known as denudation (the breaking and removing of rocks from the surface of the earth) is affected by changes in climate. It’s a difficult question to answer because no current technique can analyse changes in erosion rates during the glacial-interglacial periods. The EU-funded ICED project will resolve this debate by creating a time-series of rock erosion over a thousand to one million years ago. This method will permit erosion rate changes to correlate to particular meteorological changes and processes for the first time.
Objective
Mountain ranges evolve in response to tectonic uplift, erosion and climatic change, but decoupling the feedbacks between these processes remains one of the most active debates in Earth Science. Resolving this debate is fundamental for successful projection of Earth’s surface response under a changing climate. The Impact of ClimatE on mountain Denudation remains highly contested because no technique is available to resolve changes in erosion rates over the timescale of glacial-interglacial cycles i.e. 10^3-6 years, a key time range for quantifying the role that silicate weathering and denudation plays in modulating global climatic change. ICED will resolve this debate through establishing time-series of rock erosion over 10^3-6 years, allowing erosion rate changes to be related to specific climatic changes, and specific processes, for the first time. These data will show whether tectonics or climatic feedbacks on surface processes are dominant in determining rates of surface denudation, providing insights into the influence of the lithosphere on global climatic change throughout the Quaternary period (ice age).
The objective of ICED will be achieved through the development and application of recently established thermochronometers based on the luminescence and electron spin resonance of quartz and feldspar minerals. Thermochronometers measure the rate of rock cooling, from which rates of rock exhumation and thus erosion rates can be calculated. Unlike existing methods, the new techniques developed within ICED are capable of resolving changes in erosion over timescales of between 10^3-6 years. Combining these new methods with cosmogenic nuclide data, using numerical models developed within ICED, will allow the generation of high-resolution time-series of erosion. The strategic application of these new techniques to the western European Alps will allow the Impact of ClimatE on mountain Denudation rates to be resolved for the first time.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.