Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Renormalisation, dynamics, and hyperbolic symmetry

Description du projet

Des techniques mathématiques robustes pour l’analyse des groupes de renormalisation des systèmes de spin

Un groupe de renormalisation est un outil mathématique important en physique théorique, qui permet l’investigation systématique des changements dans un système physique à différentes échelles. L’objectif du projet SPINRG, financé par l’UE, est de développer de nouvelles méthodes mathématiques pour l’analyse par groupe de renormalisation des systèmes classiques à spin continu. L’accent sera mis sur leur dynamique stochastique et leur symétrie hyperbolique. Les travaux du projet s’appuieront sur les résultats précédemment obtenus via des méthodes utilisées avec succès pour l’analyse par groupe de renormalisation des systèmes statiques, les approches par groupe de renormalisation de la dynamique de Glauber, les systèmes de spin avec symétrie et supersymétrie hyperbolique et la théorie de la matrice aléatoire. La théorie de la renormalisation a été la clé du développement de l’électrodynamique quantique et est maintenant devenue une technique centrale de la théorie quantique des champs.

Objectif

The objective of this proposal is to develop effective methods for the analysis of classical continuous spin systems, with focus on their stochastic dynamics and on spin systems with hyperbolic symmetry. The latter are related to reinforced random walks and to random operators. In particular, I propose to develop mathematical methods for renormalisation group analysis of such systems. Renormalisation is a central concept in theoretical physics, explaining a vast range of phenomena heuristically. While its rigorous implementation is difficult, when a renormalisation group approach to a problem is available, it provides very detailed control and also explains universality.

Both, in stochastic dynamics of large scale systems and in random matrix theory, great progress has been achieved recently. In stochastic dynamics, this applies in particular to the problem of existence of solutions to SPDEs and their regularity (ultraviolet problem). This proposal focuses on the complementary regime of long time asymptotics (infrared problem), where important results have been obtained via exact solutions but robust methods remain scarce. In random matrix theory, very general classes of random matrices have been understood, yet those with finite dimensional structure like the Anderson model remain out of reach. Spin systems with hyperbolic symmetry and supersymmetry arise in the descriptions of such random matrices, and their simplified versions are prototypes for the understanding of the original models. They also describe linearly reinforced random walks which are of independent interest, and allow for some of the quantum phenomena to be reinterpreted probabilistically.

I will build on methods that I developed in previous work, including renormalisation group analysis for static systems, the development of a renormalisation group approach to Glauber dynamics, the study of spin systems with hyperbolic symmetry and supersymmetry, and my experience in random matrix theory.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-STG - Starting Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 250 043,00
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 250 043,00

Bénéficiaires (1)

Mon livret 0 0