European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Next Generation Multiphysical Models for Crystal Growth Processes

Description du projet

De meilleures modèles pour des processus de cristallogenèse

Les matériaux cristallins ont été à la base de divers progrès technologiques – des premiers transistors aux ordinateurs quantiques. Les processus de cristallogenèse restent toutefois très complexes car ils font intervenir divers phénomènes physiques. L’absence de mesures directes dans les environnements de croissance des cristaux limite la précision des modèles théoriques sous-jacents. Par conséquent, les approches expérimentales par tâtonnements continuent de dominer le développement de la cristallogenèse. Cela pourrait être amené à changer à l’avenir, grâce aux travaux qui seront menés dans le cadre du projet NEMOCRYS, financé par l’UE. NEMOCRYS est consacré au développement d’une nouvelle plateforme expérimentale («MultiValidator») qui comprendra une installation unique de cristallogenèse pour des matériaux modèles. Ces nouveaux modèles multiphysiques devraient changer le paradigme de l’observation, de la description et du développement des processus de cristallogenèse et des systèmes multiphysiques complexes semblables.

Objectif

Crystalline materials are indispensable for the contemporary world and silicon crystals in particular have enabled the technological progress from first transistors to quantum computers. Such crystals are produced in high-temperature processes with a permanent demand to improve both material quality and efficiency of mass production. The high complexity of the growth processes involving various physical phenomena from electromagnetism to fluid dynamics as well as the limited possibilities of direct measurements make process optimization very challenging. Numerical simulation is often used, but due to limited accuracy of the models, experimental trial-and-error still dominates in practice as I have directly experienced while developing crystal growth methods both on research and industrial scales for more than a decade. There is a series of fundamental assumptions in multiphysical models that have been used for many crystal growth processes of various materials but have never been thoroughly validated. I propose to build a general experimental platform (MultiValidator) to address these challenges and, for the first time, to consider the complete physical complexity of a real growth process. A unique crystal growth setup will be developed for a model material (e.g. Ga) to enable low working temperatures, relaxed vacuum-sealing requirements and easy experimental access for various measurement techniques simultaneously (e.g. flow velocity and thermal stress fields). In this way, a new level of physical understanding and a new generation of multiphysical models for crystal growth processes will be established. The following paradigm change in the way how we observe, describe and develop crystal growth processes and similar complex multiphysical systems will minimize the necessary experimental cycles and open new horizons for a scientific analysis as well as for smart process control, for example, within the Industry 4.0 initiative.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

FORSCHUNGSVERBUND BERLIN EV
Contribution nette de l'UE
€ 1 499 375,00
Adresse
RUDOWER CHAUSSEE 17
12489 Berlin
Allemagne

Voir sur la carte

Région
Berlin Berlin Berlin
Type d’activité
Research Organisations
Liens
Coût total
€ 1 499 375,00

Bénéficiaires (1)