Project description
More efficient exponential time algorithms to compute the solutions to NP-complete problems
The P versus NP algorithm is a major unsolved problem in computer science. It asks whether every problem whose solution can be quickly verified (polynomial time) can also be solved quickly (again in polynomial time). So far, little progress has been made on finding algorithms that greatly improve the run times. The EU-funded CRACKNP project aims to strike at the heart of this issue by designing the next generation of exact exponential time algorithms. To develop these algorithms, the project will address the most famous NP-complete problems (whose solutions can be verified in polynomial time). These will include the travelling salesman problem, the conjunctive normal form satisfiability problem and the knapsack problem.
Objective
Assuming P does not equal NP, there are no polynomial time algorithms for any NP-complete problem. This however still leaves a huge gap between anything super-polynomial and the exponential run times of trivial exhaustive search. The study of exact (exponential time) algorithms that aims to breach this gap is as old as Theoretical Computer Science (TCS) itself: Already in the 1960's, researchers found elementary (for modern standards) algorithms that greatly improve exponential the run times. But over time, TCS seems to have hit a brick wall: Somewhat embarrassingly, as of 2018 the run times of these classic algorithms are still the best known for many classic problems.
This project aims to strike at the heart of this issue by designing the next generation of exact exponential time algorithms. To obtain these algorithms, we consider the most famous NP-complete problems such as Traveling Salesman, CNF-Sat and Knapsack, and we challenge ourselves to improve the classic currently best algorithms for them. These problems have served as a prototypical test bed for many algorithmic techniques with extensive applications, and thus their study provides an excellent road map towards our aim.
Moreover, in the last few years it was shown that these algorithms have consequences that reach much further than originally thought: In particular, they would have a major impact on research in polynomial time algorithms, circuit complexity and parameterized complexity.
Now is the right moment for this project, as recent work (partially by the PI) has given a first glimpse of a new algorithmic toolkit emerging: Advanced new tools to decompose solutions such as the representation method, the rank-based method and the polynomial method, are still barely exploited and studied in the field.
In this project we will combine these (and many more) tools in novel ways that transcend existing approaches, and make cracks in the wall of NP-completeness seem entirely within reach.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.