Projektbeschreibung
Berechnung der Lösungen für NP-vollständige Probleme mit effizienteren Exponentialzeitalgorithmen
Das P-NP-Problem gilt als eines der wichtigsten ungelösten Probleme der Informatik. Es hinterfragt, ob jedes Problem, dessen Lösung schnell überprüft werden kann (in Polynomialzeit), auch schnell gelöst werden kann (erneut in Polynomialzeit). Bislang sind kaum Fortschritte bei der Suche nach Algorithmen zu verzeichnen, mit denen sich die Laufzeiten erheblich verbessern ließen. Das EU-finanzierte Projekt CRACKNP soll dieses Problem lösen, indem es die nächste Generation exakter Exponentialzeitalgorithmen konzipiert. Zur Entwicklung dieser Algorithmen wird das Projekt die bekanntesten NP-vollständigen Probleme behandeln (deren Lösungen in Polynomialzeit verifiziert werden können). Dazu gehören das Problem des Handlungsreisenden, das Erfüllbarkeitsproblem der Aussagenlogik und das Rucksackproblem.
Ziel
Assuming P does not equal NP, there are no polynomial time algorithms for any NP-complete problem. This however still leaves a huge gap between anything super-polynomial and the exponential run times of trivial exhaustive search. The study of exact (exponential time) algorithms that aims to breach this gap is as old as Theoretical Computer Science (TCS) itself: Already in the 1960's, researchers found elementary (for modern standards) algorithms that greatly improve exponential the run times. But over time, TCS seems to have hit a brick wall: Somewhat embarrassingly, as of 2018 the run times of these classic algorithms are still the best known for many classic problems.
This project aims to strike at the heart of this issue by designing the next generation of exact exponential time algorithms. To obtain these algorithms, we consider the most famous NP-complete problems such as Traveling Salesman, CNF-Sat and Knapsack, and we challenge ourselves to improve the classic currently best algorithms for them. These problems have served as a prototypical test bed for many algorithmic techniques with extensive applications, and thus their study provides an excellent road map towards our aim.
Moreover, in the last few years it was shown that these algorithms have consequences that reach much further than originally thought: In particular, they would have a major impact on research in polynomial time algorithms, circuit complexity and parameterized complexity.
Now is the right moment for this project, as recent work (partially by the PI) has given a first glimpse of a new algorithmic toolkit emerging: Advanced new tools to decompose solutions such as the representation method, the rank-based method and the polynomial method, are still barely exploited and studied in the field.
In this project we will combine these (and many more) tools in novel ways that transcend existing approaches, and make cracks in the wall of NP-completeness seem entirely within reach.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-STG - Starting Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2019-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
3584 CS Utrecht
Niederlande
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.