Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Methane and Ammonium Removal In redoX transition zones

Project description

Exploring the role that microorganisms play in modulating Earth’s biogeochemistry

To understand the Earth's response to global change, we must have detailed insight in the main microbial pathways responsible for key geochemical transformations. In marine environments, sharp redox transitions act as prime sites for ammonium and methane removal and hence strongly modulate the cycles of carbon and nitrogen. However, there is still much to learn about the microbial players and key controls of these redox reactions. The EU-funded MARIX project aims to investigate the geochemistry of key redox zones and the complex, in situ microbial interactions that together impact marine environments. The project members will do so through novel fieldwork, cutting-edge laboratory experiments and advanced modelling for a range of coastal ecosystems. The project will result in a better understanding of the key role that microorganisms play in modulating Earth’s biogeochemistry.

Objective

Earth’s geochemical evolution was shaped by an enormous microbial metabolic diversity. One of the urgent scientific grand challenges is to decipher the key geochemical pathways involved in those 4 Gy of evolution, with the ultimate aim to obtain a truly predictive understanding of the response of the Earth System to global change. Rapid advances in geochemistry and microbiology have revealed the unique and critical role of sharp redox transitions in marine environments as prime sites for the removal of toxic ammonium and the greenhouse gas methane. Yet, the redox reactions, microbial players, and key controls remain largely unexplored. Our ERC synergy project MARIX will unite the complementary expertise required to gain a fundamental and mechanistic understanding of the geochemistry of these redox zones and the complex in-situ microbial interactions that together strongly impact our environment. By combining highly innovative fieldwork, cutting-edge laboratory experiments and state-of-the-art modeling for a range of carefully selected and representative coastal ecosystems we will: 1. Unravel the geochemistry and novel microbial pathways that remove methane and ammonium through oxidation with metal-oxides. 2. Determine the impact of the novel microbial pathways of methane and ammonium oxidation on the dynamics of nutrients, oxygen and other key elements. 3. Develop innovative gene-centric biogeochemical models for coastal sediments and overlying waters, to improve projections of the impacts of eutrophication and climate change. MARIX will bring together two outstanding and complementary groups located within easy travel distance, allowing excellent synergistic coupling of infrastructure, personnel and resources on a daily basis. Our project will lead to major breakthroughs in the understanding of the key role that microorganisms play in modulating Earth’s biogeochemistry with far-reaching implications for a wide range of research fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SyG - Synergy grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-SyG

See all projects funded under this call

Host institution

STICHTING RADBOUD UNIVERSITEIT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 6 516 885,00
Address
HOUTLAAN 4
6525 XZ Nijmegen
Netherlands

See on map

Region
Oost-Nederland Gelderland Arnhem/Nijmegen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 6 516 885,00

Beneficiaries (2)

My booklet 0 0