Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Using cell-cell interactions to unlock new cancer treatments: Forcing neural crest tumors back onto the developmental path

Project description

Forced differentiation of tumour cells as a new cancer treatment

The interactions between tumours and the microenvironment are often critical to uncovering the mechanisms of their survival. The alternative approach to killing tumour cells, either directly or through the immune system, is to force them to differentiate. This strategy is particularly promising for tumours originated from the progenitor populations that failed to follow proper differentiation cascades. The EU-funded KILL-OR-DIFFERENTIAT project will develop a systematic approach for the characterisation of the cell–cell interactions in complex microenvironments, applying analysis of disassociated single-cell transcriptomics to identify intercellular pathways that can push tumours of neural crest origin towards terminal differentiation.

Objective

The interactions between tumor and its microenvironment are often critical to uncovering the mechanisms of tumor survival. A striking example is the recent success of immunotherapy approaches that expose tumor cells to immune attack by disrupting a specific interaction between the tumor and infiltrating lymphocytes. The tumor can also repress immune response by inducing complex interactions among dozens of immune and stromal cell types that typically make up tumor microenvironment, however those remain largely uncharacterized as we currently lack systematic approaches to uncover relevant cell-cell interactions. The alternative to killing tumor cells, either directly or through immune system, is to force them to differentiate. Such strategy is particularly promising for tumors arising due to failure of progenitor populations to follow proper differentiation cascade. Here as well, the progress has been limited by lack of understanding of specific intercellular signals that that are disrupted in tumorigenesis.
We propose a systematic approach for characterizing cell-cell interactions in complex microenvironments through joint analysis of spatially-resolved and disassociated single-cell transcriptomics. We will apply it to identify inter-cellular signals and pathways that can push tumors of neural crest origin, including as pheochromocytoma (PCC), paraganglioma (PGL) and neuroblastoma (NB), towards terminal differentiation. Building on our expertise with neural crest development, we will use single-cell profiling to map individual tumor cells onto developmental trajectory of neural crest differentiation. Spatial transcriptomics analysis will then be used to identify the sources and nature of microenvironment signals that channel neural crest differentiation during normal development. Contrasting interactions in normal and tumor tissues we will then aim to identify factors, pathways or signals that would push that PCC, PGL and NB tumors towards benign state.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SyG - Synergy grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-SyG

See all projects funded under this call

Host institution

MEDIZINISCHE UNIVERSITAET WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 3 166 642,63
Address
SPITALGASSE 23
1090 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 166 642,63

Beneficiaries (4)

My booklet 0 0